Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 February 2021 | Story Supplied | Photo Supplied
Dr João Vidal is a research fellow at the Department of Plant Sciences and the Afromontane Research Unit (ARU) at the University of the Free State (UFS).

According to United Nations data projections for 2100, sub-Saharan Africa is set to experience a demographic explosion. The most rapid population growth zones in Africa are in or around mountains and the importance of managing these mountain ecosystems sustainably in order to maintain the benefits to such a growing population is critical, says Dr João Vidal, a research fellow at the Department of Plant Sciences and the Afromontane Research Unit (ARU) at the University of the Free State (UFS). 

The link between human population growth and the demand for water will impact these mountain grasslands. All of Africa’s important rivers originate in mountainous areas. The sustainable management of African mountain landscapes is thus vital for the sustained provision of quality water in suitable quantities. “Water is already limited in some places. This year we are facing another drought in South Africa, and if it was not for the mountains, it could have been much worse. The long-term resilience of Southern Africa’s mountains and their ecosystem services should be an absolute priority for both research and conservation,” says Dr Vidal.

Human population growth has several implications

As a mountain ecologist, his recent research is centred on developing indicators for monitoring biodiversity change in Southern Africa’s mountains. This is a collaborative research project with the South African Environmental Observation Network (SAEON), Ezemvelo KZN Wildlife, and the University of Pretoria.

Human population growth, as predicted for Southern Africa, has several implications for natural-resource management and biodiversity conservation. “Southern Africa has one of the highest proportions of grassland-dominated mountains in the world, comparable only to Central Asia,” says Dr Vidal. 

In December, UN Secretary-General António Guterres said during the launch of the 2021 Global Humanitarian Overview: “Conflict, climate change and COVID-19 have created the greatest humanitarian challenge since the Second World War. The number of people at risk of starvation has doubled. Hundreds of millions of children are out of school. Levels of extreme poverty have risen for the first time in 22 years.”

According to Dr Vidal this new scenario significantly increases the pressure on mountain environments and their biota, since people will have to find alternative ways of feeding their families, their animals, while the economy struggles to recover globally.

Through his research, Dr Vidal – together with a growing community of practices for Southern Africa’s mountains – aims to understand the socio-ecological functioning of these montane grasslands in order to encourage a science-policy-action interface for their sustainable management in a changing world. 


Alternative ways for measuring environmental change in mountains

Since much global mountain research is focused on forest-dominated mountains, Dr Vidal and his collaborators are developing specific tools to track climate change in grassy mountains.
He explains: “When you look at the available tools for tracking climate change in mountains, you have a tree line for many mountains in the world. However, with the Southern African grassy mountains, it is impossible to use such a tool. We are working on alternative ways for measuring environmental change in our mountains.

“As it gets warmer, certain communities of grasses may retract towards higher elevations because they need a certain minimum temperature to survive. The problem seems to be that current climate change is occurring at a much faster rate than most species might be able to retract. This means that higher temperatures may lead to habitat losses for temperature-vulnerable groups.

“Climate change is also making mountains increasingly vulnerable to ecological invasion by non-native species. The severe temperatures in mountains are a good barrier for many problematic lowland species. But with warmer temperatures in the mountains, these barriers are being weakened, increasing the number of potentially invasive plants in our mountains. With higher temperatures there is potential for a large guild of invasive trees to overrun grassland mountains affecting waterflow into dams and rivers. Examples are pines, willows, gums, and wattles, to name a few.

“The presence of invasive trees, especially along rivers, has long-term negative impacts on the functioning of mountain catchments. These trees destabilise riverbanks, extract large amounts of water, and cause local extinction of endemic montane biodiversity. In drier environments such as grasslands, this exacerbates the fragile water productivity,” he adds.

Global policymakers to recognise the value of grassy mountains 

It is important to draw attention to the value of natural grassy mountain systems around the world and to how threatened they are. The world’s grassy mountains need to be better studied and better placed on the global stage. This will encourage policy makers to recognise these systems and implement appropriate measures to facilitate their sustainable management. 

For the first time in 20 years, the recent International Panel of Climate Change (IPCC) report to the United Nations included a chapter focusing solely on mountains. “Policymakers are finally realising how disproportionately important mountain environments are and how dramatically they are affected by climate change,” says Dr Vidal. 

However, African mountains are underrepresented in research literature; it is the only continent for which there is no data included in the IPCC report. There is an urgent need to represent African mountains – especially Southern Africa’s mountains – on the global stage when it comes to climate change,” states Dr Vidal.

Dr Vidal is conducting this study in partnership with Dr Ralph Clark, Director of the ARU on the UFS Qwaqwa Campus

News Archive

Eye tracker device a first in Africa
2013-07-31

 

 31 July 2013

Keeping an eye on empowerment

"If we can see what you see, we can think what you think."

Eye-tracking used to be one of those fabulous science-fiction inventions, along with Superman-like bionic ability. Could you really use the movement of your eyes to read people's minds? Or drive your car? Or transfix your enemy with a laser-beam?

Well, actually, yes, you can (apart, perhaps, from the laser beam… ). An eye tracker is not something from science fiction; it actually exists, and is widely used around the world for a number of purposes.

Simply put, an eye tracker is a device for measuring eye positions and eye movement. Its most obvious use is in marketing, to find out what people are looking at (when they see an advertisement, for instance, or when they are wandering along a supermarket aisle). The eye tracker measures where people look first, what attracts their attention, and what they look at the longest. It is used extensively in developed countries to predict consumer behaviour, based on what – literally – catches the eye.

On a more serious level, psychologists, therapists and educators can also use this device for a number of applications, such as analysis and education. And – most excitingly – eye tracking can be used by disabled people to use a computer and thereby operate a number of devices and machines. Impaired or disabled people can use eye tracking to get a whole new lease on life.

In South Africa and other developing countries, however, eye tracking is not widely used. Even though off-the-shelf webcams and open-source software can be obtained extremely cheaply, they are complex to use and the quality cannot be guaranteed. Specialist high-quality eye-tracking devices have to be imported, and they are extremely expensive – or rather – they used to be. Not anymore.

The Department of Computer Science and Informatics (CSI) at the University of the Free State has succeeded in developing a high-quality eye tracker at a fraction of the cost of the imported devices. Along with the hardware, the department has also developed specialised software for a number of applications. These would be useful for graphic designers, marketers, analysts, cognitive psychologists, language specialists, ophthalmologists, radiographers, occupational and speech therapists, and people with disabilities. In the not-too-distant future, even fleet owners and drivers would be able to use this technology.

"The research team at CSI has many years of eye-tracking experience," says team leader Prof Pieter Blignaut, "both with the technical aspect as well as the practical aspect. We also provide a multi-dimensional service to clients that includes the equipment, training and support. We even provide feedback to users.

"We have a basic desktop model available that can be used for research, and can be adapted so that people can interact with a computer. It will be possible in future to design a device that would be able to operate a wheelchair. We are working on a model incorporated into a pair of glasses which will provide gaze analysis for people in their natural surroundings, for instance when driving a vehicle.

"Up till now, the imported models have been too expensive," he continues. "But with our system, the technology is now within reach for anyone who needs it. This could lead to economic expansion and job creation."

The University of the Free State is the first manufacturer of eye-tracking devices in Africa, and Blignaut hopes that the project will contribute to nation-building and empowerment.

"The biggest advantage is that we now have a local manufacturer providing a quality product with local training and support."

In an eye-tracking device, a tiny infra-red light shines on the eye and causes a reflection which is picked up by a high-resolution camera. Every eye movement causes a change in the reflection, which is then mapped. Infra-red light is not harmful to the eye and is not even noticed. Eye movement is then completely natural.

Based on eye movements, a researcher can study cognitive patterns, driver behaviour, attention spans, even thinking patterns. A disabled person could use their eye-movements to interact with a computer, with future technology (still in development) that would enable that computer to control a wheelchair or operate machinery.

The UFS recently initiated the foundation of an eye-tracking interest group for South Africa (ETSA) and sponsor a biennial-eye tracking conference. Their website can be found at www.eyetrackingsa.co.za.

“Eye tracking is an amazing tool for empowerment and development in Africa, “ says Blignaut, “but it is not used as much as it should be, because it is seen as too expensive. We are trying to bring this technology within the reach of anyone and everyone who needs it.”

Issued by: Lacea Loader
Director: Strategic Communication

Telephone: +27 (0) 51 401 2584
Cell: +27 (0) 83 645 2454
E-mail: news@ufs.ac.za
Fax: +27 (0) 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept