Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 February 2021 | Story Supplied | Photo Supplied
Dr João Vidal is a research fellow at the Department of Plant Sciences and the Afromontane Research Unit (ARU) at the University of the Free State (UFS).

According to United Nations data projections for 2100, sub-Saharan Africa is set to experience a demographic explosion. The most rapid population growth zones in Africa are in or around mountains and the importance of managing these mountain ecosystems sustainably in order to maintain the benefits to such a growing population is critical, says Dr João Vidal, a research fellow at the Department of Plant Sciences and the Afromontane Research Unit (ARU) at the University of the Free State (UFS). 

The link between human population growth and the demand for water will impact these mountain grasslands. All of Africa’s important rivers originate in mountainous areas. The sustainable management of African mountain landscapes is thus vital for the sustained provision of quality water in suitable quantities. “Water is already limited in some places. This year we are facing another drought in South Africa, and if it was not for the mountains, it could have been much worse. The long-term resilience of Southern Africa’s mountains and their ecosystem services should be an absolute priority for both research and conservation,” says Dr Vidal.

Human population growth has several implications

As a mountain ecologist, his recent research is centred on developing indicators for monitoring biodiversity change in Southern Africa’s mountains. This is a collaborative research project with the South African Environmental Observation Network (SAEON), Ezemvelo KZN Wildlife, and the University of Pretoria.

Human population growth, as predicted for Southern Africa, has several implications for natural-resource management and biodiversity conservation. “Southern Africa has one of the highest proportions of grassland-dominated mountains in the world, comparable only to Central Asia,” says Dr Vidal. 

In December, UN Secretary-General António Guterres said during the launch of the 2021 Global Humanitarian Overview: “Conflict, climate change and COVID-19 have created the greatest humanitarian challenge since the Second World War. The number of people at risk of starvation has doubled. Hundreds of millions of children are out of school. Levels of extreme poverty have risen for the first time in 22 years.”

According to Dr Vidal this new scenario significantly increases the pressure on mountain environments and their biota, since people will have to find alternative ways of feeding their families, their animals, while the economy struggles to recover globally.

Through his research, Dr Vidal – together with a growing community of practices for Southern Africa’s mountains – aims to understand the socio-ecological functioning of these montane grasslands in order to encourage a science-policy-action interface for their sustainable management in a changing world. 


Alternative ways for measuring environmental change in mountains

Since much global mountain research is focused on forest-dominated mountains, Dr Vidal and his collaborators are developing specific tools to track climate change in grassy mountains.
He explains: “When you look at the available tools for tracking climate change in mountains, you have a tree line for many mountains in the world. However, with the Southern African grassy mountains, it is impossible to use such a tool. We are working on alternative ways for measuring environmental change in our mountains.

“As it gets warmer, certain communities of grasses may retract towards higher elevations because they need a certain minimum temperature to survive. The problem seems to be that current climate change is occurring at a much faster rate than most species might be able to retract. This means that higher temperatures may lead to habitat losses for temperature-vulnerable groups.

“Climate change is also making mountains increasingly vulnerable to ecological invasion by non-native species. The severe temperatures in mountains are a good barrier for many problematic lowland species. But with warmer temperatures in the mountains, these barriers are being weakened, increasing the number of potentially invasive plants in our mountains. With higher temperatures there is potential for a large guild of invasive trees to overrun grassland mountains affecting waterflow into dams and rivers. Examples are pines, willows, gums, and wattles, to name a few.

“The presence of invasive trees, especially along rivers, has long-term negative impacts on the functioning of mountain catchments. These trees destabilise riverbanks, extract large amounts of water, and cause local extinction of endemic montane biodiversity. In drier environments such as grasslands, this exacerbates the fragile water productivity,” he adds.

Global policymakers to recognise the value of grassy mountains 

It is important to draw attention to the value of natural grassy mountain systems around the world and to how threatened they are. The world’s grassy mountains need to be better studied and better placed on the global stage. This will encourage policy makers to recognise these systems and implement appropriate measures to facilitate their sustainable management. 

For the first time in 20 years, the recent International Panel of Climate Change (IPCC) report to the United Nations included a chapter focusing solely on mountains. “Policymakers are finally realising how disproportionately important mountain environments are and how dramatically they are affected by climate change,” says Dr Vidal. 

However, African mountains are underrepresented in research literature; it is the only continent for which there is no data included in the IPCC report. There is an urgent need to represent African mountains – especially Southern Africa’s mountains – on the global stage when it comes to climate change,” states Dr Vidal.

Dr Vidal is conducting this study in partnership with Dr Ralph Clark, Director of the ARU on the UFS Qwaqwa Campus

News Archive

Renowned forensic scientist speaks at the UFS
2014-04-02


Forensic science is about the truth. At the presentation delivered by Dr David Klatzow, were, from the left: Tinus Viljoen, lecturer in Forensic Genetics, Dr Klatzow and Laura Heathfield, also a lecturer in Forensic Genetics.
Photo: Leonie Bolleurs 

It is necessary for more research to be done in the field of forensic science in South Africa. This is according to Dr David Klatzow, well-known forensic scientist, during a lecture delivered at the University of the Free State (UFS) last week.

The university is offering, for the first time this year, a BSc degree in Forensic Science in the Department of Genetics. This three-year degree is, among others, directed at people working for the South African Police Service on crime scenes and on criminal cases in forensic laboratories. Students can also study up to PhD level, specialising in various forensic fields.

There is no accredited forensic laboratory in South Africa. “It is time to look differently at forensic science, and to deliver research papers on the subject. In light of the manner in which science is applied, we have to look differently at everything,” Dr Klatzow said.

Dr Klatzow praised the university for its chemistry-based course. “Chemistry is a strong basis for forensic science,” he said.

A paradigm shift in terms of forensic science is needed. Micro scratches on bullets, fingerprints, DNA, bite marks – all of these are forensic evidence that in the past led to people being wrongfully hanged. This evidence is not necessarily the alpha and omega of forensic science today. DNA, which seems to be the golden rule, can produce problems in itself. Because a person leaves DNA in his fingerprint, it is possible that DNA is transferred from one crime scene to another by forensic experts dusting for fingerprints. According to Dr Klatzow, this is only one of the problems that could be experienced with DNA evidence.

“No single set of forensic evidence is 100% effective or without problems. Rather approach the crime scene through a combination of evidence, by collecting fingerprints, DNA, etc. It is also very important to look at the context in which the events happened.

“A person sees what he expects to see. This causes huge problems in terms of forensic science. For example, if a criminal fits the profile of the perpetrator, it doesn’t follow that this specific criminal is the culprit. It isn’t what we don’t know that gives us trouble, it’s what we know that isn’t so,” Dr Klatzow said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept