Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 February 2021 | Story Supplied | Photo Supplied
Dr João Vidal is a research fellow at the Department of Plant Sciences and the Afromontane Research Unit (ARU) at the University of the Free State (UFS).

According to United Nations data projections for 2100, sub-Saharan Africa is set to experience a demographic explosion. The most rapid population growth zones in Africa are in or around mountains and the importance of managing these mountain ecosystems sustainably in order to maintain the benefits to such a growing population is critical, says Dr João Vidal, a research fellow at the Department of Plant Sciences and the Afromontane Research Unit (ARU) at the University of the Free State (UFS). 

The link between human population growth and the demand for water will impact these mountain grasslands. All of Africa’s important rivers originate in mountainous areas. The sustainable management of African mountain landscapes is thus vital for the sustained provision of quality water in suitable quantities. “Water is already limited in some places. This year we are facing another drought in South Africa, and if it was not for the mountains, it could have been much worse. The long-term resilience of Southern Africa’s mountains and their ecosystem services should be an absolute priority for both research and conservation,” says Dr Vidal.

Human population growth has several implications

As a mountain ecologist, his recent research is centred on developing indicators for monitoring biodiversity change in Southern Africa’s mountains. This is a collaborative research project with the South African Environmental Observation Network (SAEON), Ezemvelo KZN Wildlife, and the University of Pretoria.

Human population growth, as predicted for Southern Africa, has several implications for natural-resource management and biodiversity conservation. “Southern Africa has one of the highest proportions of grassland-dominated mountains in the world, comparable only to Central Asia,” says Dr Vidal. 

In December, UN Secretary-General António Guterres said during the launch of the 2021 Global Humanitarian Overview: “Conflict, climate change and COVID-19 have created the greatest humanitarian challenge since the Second World War. The number of people at risk of starvation has doubled. Hundreds of millions of children are out of school. Levels of extreme poverty have risen for the first time in 22 years.”

According to Dr Vidal this new scenario significantly increases the pressure on mountain environments and their biota, since people will have to find alternative ways of feeding their families, their animals, while the economy struggles to recover globally.

Through his research, Dr Vidal – together with a growing community of practices for Southern Africa’s mountains – aims to understand the socio-ecological functioning of these montane grasslands in order to encourage a science-policy-action interface for their sustainable management in a changing world. 


Alternative ways for measuring environmental change in mountains

Since much global mountain research is focused on forest-dominated mountains, Dr Vidal and his collaborators are developing specific tools to track climate change in grassy mountains.
He explains: “When you look at the available tools for tracking climate change in mountains, you have a tree line for many mountains in the world. However, with the Southern African grassy mountains, it is impossible to use such a tool. We are working on alternative ways for measuring environmental change in our mountains.

“As it gets warmer, certain communities of grasses may retract towards higher elevations because they need a certain minimum temperature to survive. The problem seems to be that current climate change is occurring at a much faster rate than most species might be able to retract. This means that higher temperatures may lead to habitat losses for temperature-vulnerable groups.

“Climate change is also making mountains increasingly vulnerable to ecological invasion by non-native species. The severe temperatures in mountains are a good barrier for many problematic lowland species. But with warmer temperatures in the mountains, these barriers are being weakened, increasing the number of potentially invasive plants in our mountains. With higher temperatures there is potential for a large guild of invasive trees to overrun grassland mountains affecting waterflow into dams and rivers. Examples are pines, willows, gums, and wattles, to name a few.

“The presence of invasive trees, especially along rivers, has long-term negative impacts on the functioning of mountain catchments. These trees destabilise riverbanks, extract large amounts of water, and cause local extinction of endemic montane biodiversity. In drier environments such as grasslands, this exacerbates the fragile water productivity,” he adds.

Global policymakers to recognise the value of grassy mountains 

It is important to draw attention to the value of natural grassy mountain systems around the world and to how threatened they are. The world’s grassy mountains need to be better studied and better placed on the global stage. This will encourage policy makers to recognise these systems and implement appropriate measures to facilitate their sustainable management. 

For the first time in 20 years, the recent International Panel of Climate Change (IPCC) report to the United Nations included a chapter focusing solely on mountains. “Policymakers are finally realising how disproportionately important mountain environments are and how dramatically they are affected by climate change,” says Dr Vidal. 

However, African mountains are underrepresented in research literature; it is the only continent for which there is no data included in the IPCC report. There is an urgent need to represent African mountains – especially Southern Africa’s mountains – on the global stage when it comes to climate change,” states Dr Vidal.

Dr Vidal is conducting this study in partnership with Dr Ralph Clark, Director of the ARU on the UFS Qwaqwa Campus

News Archive

Research on cactus pear grabs attention of food, cosmetic and medical industry
2015-02-18

Cactus pear
Photo: Charl Devenish

The dedicated research and development programme at the UFS on spineless cactus pear (Opuntia ficus-indica) – also known as prickly pear – has grown steadily in both vision and dimension during the past 15 years. Formal cactus pear research at the UFS started with the formation of the Prickly Pear Working Group (PPWG) in June 2002. It has since gone from strength to strength with several MSc dissertations and a PhD thesis as well as popular and scientific publications flowing from this initiative.

According to Prof Wijnand Swart from the Department of Plant Sciences, the UFS is today recognised as a leading institution in the world conducting multi-disciplinary research on spineless cactus pear.

Cactus pear for animal feed

Increasing demands on already scarce water resources in South Africa require alternative sources of animal feed – specifically crops that are more efficient users of water. One alternative with the potential for widespread production is spineless cactus pear. It is 1.14 x more efficient in its use of water than Old man saltbush, 2.8 x more efficient than wheat, 3.75 x more efficient than lucerne and 7.5 x more efficient than rangeland vegetation.

“Studies on the use of sun-dried cactus pear cladodes suggest that it has the potential to provide some 25% of the basic feed resources required by South Africa’s commercial ruminant feed manufacturing sector,” says Prof HO de Waal of the Department of Animal, Wildlife and Grassland Sciences at the UFS.

Until recently, research has focused extensively on the use of cactus pear as drought fodder. However, this is now beginning to shift, with growing interest in the intensive production of spineless cactus pear for other types of animal feed. One example is the spineless cactus pear fruit, produced seasonal, yielding large quantities of fruit in a relatively short period of a few months in summer. Unless kept in cold storage, the fruit cannot be stored for a long period. Therefore, a procedure was developed to combine large volumes of mashed cactus pear fruit with dry hay and straw and preserve it for longer periods as high moisture livestock feed, kuilmoes – a high water content livestock feed similar to silage.

Cactus pear and Pineapple juice
Photo: Charl Devenish

Cactus pear for human consumption

“In addition to its use as a livestock feed, cactus pear is increasingly being cultivated for human consumption. Although the plant can be consumed fresh as a juice or vegetable, significant value can be added through processing. This potential is considerable: the plant can be pickled; preserved as a jam or marmalade; or dried and milled to produce baking flour. It can also serve as a replacement of egg and fat in mayonnaise,” said Dr Maryna de Wit from the Department of Microbial, Biochemical and Food Biotechnology.

The extraction of mucilage from fresh cladodes can form a gelling, emulsifier, and fat-replacing agent commonly found in food products such as mayonnaise and candy. During an information session to the media Dr De Wit and her team conducted a food demonstration to showcase the use of the cladodes in a juice, chicken stir-fry, biscuits and a salad.

The extrusion of cactus pear seed oil provides a further lucrative niche product to the array of uses. These include high-value organic oil for the cosmetic sector, such as soap, hair gel and sun screens.

The cladodes and the fruit also have medicinal uses. It has anti-viral, anti-inflammatory, pain killing and anti-diabetic agents. It is also high in fibre and can lower cholesterol. The fruit also prevents proliferation of cells and suppresses tumour growth and can even help to reduce a hangover.

In South Africa the outdated perception of cactus pears as thorny, alien invaders, is rapidly disappearing. Instead, farmers now recognise that cactus pear can play a vital role as a high yielding, water-efficient, multi-use crop, said Prof de Waal and the members of the Cactus Pear Team.

Facebook photo gallery
Dagbreek interview with Dr Maryna de Wit  

Research on cactus pear (read the full story)

For more information or enquiries contact news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept