Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 July 2021 | Story Nonsindiso Qwabe | Photo Nonsindiso Qwabe
On top of the Drakensberg. The ARU and Witsieshoek Mountain Lodge research team are, from the left: Grant Martin, Dr Ralph Clark, Jan van Niekerk, Prof Aliza le Roux, Prof Peter Taylor, and Dr Sandy Steenhuisen.

All mountains around the world have native and non-native species that are expanding their ranges quite dramatically; however, little research has been conducted towards understanding the long-term redistribution of species and the effects of global change on biodiversity.


The Afromontane Research Unit (ARU) on the University of the Free State Qwaqwa Campus – as part of the Mountain Invasion Research Network – has secured a two-year EU Horizon 2020 project under the Department of Science and Innovation, which will be looking at the mechanisms underlying the success and impact of range-expanding species on biodiversity and ecosystem functioning.

On Monday 19 July 2021, the ARU took a few of its researchers on a scenic helicopter ride to the summit of the Drakensberg for an alpine field-experiment site inspection of the Mont-aux-Sources peak, one of the highest sections of the Drakensberg range. This site has been identified for the project which the research unit will be leading on mountain research.

ARU Director, Dr Ralph Clark, said the project would explore the effects of global change, biological invasions (when species invade new geographic regions), as well as climate and land-use change. He said experiments were needed to explore the various possibilities and to test the extent to which species respond to experimental treatments. The project would therefore be conducting experiments for two years using open-top chambers – causing an increase in temperature of 3 or 4 degrees to what you find naturally – on plant species from lower down to the top of the mountain, to see how they function. “This will give us an idea of whether they will be able to survive in global warming scenarios. If temperatures get warmer, we might start seeing a lot of plants up here that we wouldn’t otherwise find here.”

Dr Clark said little is known about the long-term monitoring of species distribution and the effects of global change. Implementing the project in the Maloti-Drakensberg alpine area will therefore put the area in the global mountain research arena. The elevational gradient in the Maloti-Drakensberg Mountains provides space to explore the key processes underlying the variation in species elevation with climate change. “One of the things we don’t know much about are alpine systems. We are hoping to establish a long-term alpine research site and try to add as many studies as we can. The more science we can bring up here, the more we can know about mountain life. What happens on mountains has a lot of impact on social dynamics.

“This project is looking to see what is driving range expansion. Every mountain has its own context. In the Swiss alpine, fires are not a big factor, but fires are one of the biggest factors on our mountains. Some of our native and non-native species are therefore fire-driven, so as fire increases, you might have them spreading faster.”

Listen to the article:

News Archive

Collaboration between UFS and Mayo Clinic to revolutionise cancer treatment
2014-06-27



Attending the lecture were, from the left: Dr Chantel Swart, Prof Lodewyk Kock, Prof Debabrata Mukhopadhyay, Prof James du Preez; back: Prof Pieter van Wyk.
Dr Swart, Profs Kock and Du Preez are from the Department of Microbial, Biochemical and Food Biotechnology. Prof Mukhopadhyay is from the Mayo Clinic (US) and Prof Van Wyk is from the Centre for Microscopy at the UFS.
Photo: Supplied
The UFS made a discovery that may have enormous implications for the treatment of diseases in humans.

Since the discovery, the UFS joined forces with the Mayo Clinic in Rochester, US, in the fight against cancer.

In this collective effort, UFS researchers would be able to assist the Mayo team to:
• see how treatment in cancer patients is progressing,
• target treatments more effectively,
• reduce dosages in order to make treatment gentler on the patient,
• track the effectiveness of the chemotherapy drugs used, and
• gain an accurate view of how the cancer is being eliminated.

Prof Lodewyk Kock, Outstanding Professor at the Department of Microbial, Biochemical and Food Biotechnology, and his team incidentally created a technique to use argon gas particles for the first time on biological material to slice open cells to look inside.

The team that supported Prof Kock includes Dr Chantel Swart, Khumisho Dithebe (PhD student), Prof Hendrik Swart (Department of Physics) and Prof Pieter van Wyk (Centre for Microscopy).

Prof Debabrata Mukhopadhyay from the Mayo Clinic in Rochester, US, got to hear about this breakthrough at the UFS and a collaboration between the two institutions was established.

During a visit to the Bloemfontein Campus, Prof Mukhopadhyay explained novel techniques that make use of gold nanoparticles. These particles attach to chemotherapeutic drugs to selectively target cancer cells – dramatically decreasing the side effects to normal human cells.

For these new drugs (coupled to gold nanoparticles) to be accepted into clinical practice, visual and chemical proof is needed, though. This is where the technique developed by the UFS will play a vital role.

With the technique to look inside cells, the composition, location and metabolism of these drugs can be determined. This will aid in a proof of concept for the application of the nano-drugs. Furthermore, it will enable approval for use of these drugs in clinical trials and eventually could revolutionise cancer treatment as a whole.

For video lectures on the technique used, as well as its findings, follow these links:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept