Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 July 2021 | Story Nonsindiso Qwabe | Photo Nonsindiso Qwabe
On top of the Drakensberg. The ARU and Witsieshoek Mountain Lodge research team are, from the left: Grant Martin, Dr Ralph Clark, Jan van Niekerk, Prof Aliza le Roux, Prof Peter Taylor, and Dr Sandy Steenhuisen.

All mountains around the world have native and non-native species that are expanding their ranges quite dramatically; however, little research has been conducted towards understanding the long-term redistribution of species and the effects of global change on biodiversity.


The Afromontane Research Unit (ARU) on the University of the Free State Qwaqwa Campus – as part of the Mountain Invasion Research Network – has secured a two-year EU Horizon 2020 project under the Department of Science and Innovation, which will be looking at the mechanisms underlying the success and impact of range-expanding species on biodiversity and ecosystem functioning.

On Monday 19 July 2021, the ARU took a few of its researchers on a scenic helicopter ride to the summit of the Drakensberg for an alpine field-experiment site inspection of the Mont-aux-Sources peak, one of the highest sections of the Drakensberg range. This site has been identified for the project which the research unit will be leading on mountain research.

ARU Director, Dr Ralph Clark, said the project would explore the effects of global change, biological invasions (when species invade new geographic regions), as well as climate and land-use change. He said experiments were needed to explore the various possibilities and to test the extent to which species respond to experimental treatments. The project would therefore be conducting experiments for two years using open-top chambers – causing an increase in temperature of 3 or 4 degrees to what you find naturally – on plant species from lower down to the top of the mountain, to see how they function. “This will give us an idea of whether they will be able to survive in global warming scenarios. If temperatures get warmer, we might start seeing a lot of plants up here that we wouldn’t otherwise find here.”

Dr Clark said little is known about the long-term monitoring of species distribution and the effects of global change. Implementing the project in the Maloti-Drakensberg alpine area will therefore put the area in the global mountain research arena. The elevational gradient in the Maloti-Drakensberg Mountains provides space to explore the key processes underlying the variation in species elevation with climate change. “One of the things we don’t know much about are alpine systems. We are hoping to establish a long-term alpine research site and try to add as many studies as we can. The more science we can bring up here, the more we can know about mountain life. What happens on mountains has a lot of impact on social dynamics.

“This project is looking to see what is driving range expansion. Every mountain has its own context. In the Swiss alpine, fires are not a big factor, but fires are one of the biggest factors on our mountains. Some of our native and non-native species are therefore fire-driven, so as fire increases, you might have them spreading faster.”

Listen to the article:

News Archive

UFS involved in project to light up the townships
2006-06-06

The parties involved with the project are from the left: Prof Hendrik Swart (Departmental Chairperson of the UFS Department of Physics), Dr Thembela Hillie (CSIR), Prof Neerich Revaprasadu (Department of Chemistry at the University of Zululand) and Dr Wynand Steyn (CSIR).

UFS involved in project that could light up the townships   

The University of the Free State’s (UFS) Department of Physics is involved with a project that could make life easier in the townships through the use of artificial light.

“The project is based on the use of sunlight to activate nano material in for example cement and paint during the day. At night the cement or paint can then radiate light,” said Prof Hendrik Swart, Departmental Chairperson of the UFS Department of Physics.

According to Prof Swart an amount of R3,9 million has been made available by the Council for Scientific and Industrial Research (CSIR) for the further development of the project.   

Prof Swart visited the University of Florida in America in 1995 for a year where he researched luminescent phosphor material that is suitable for flat panel television screens.  The red, green and blue spots on the television screens originate from these kinds of phosphor materials.  “At that stage plasma television screens were only a dream.  Today it is sold everywhere,” said Prof Swart. 

“Upon my return I started a research group at the UFS which investigated the degrading of phosphor material.  We also started to concentrate on the effectiveness of nano phosphors.  In the mean time our cooperation with the Americans was strengthened with follow-up visits to America of my colleagues, Prof Koos Terblans and Mr Martin Ntwaeaborwa,” said Prof Swart.

“Nano phosphors are basically luminescent powders that consist of particles that are 1 millionth of a millimetre.  These particles can provide light as soon as they are illuminated with, for instance, sunlight.  The amount of time these particles can provide light, is determined by the impurities in the material,” said Prof Swart.

According to Prof Swart nano particles are developed and linked to infrastructure materials in order for these materials to be excited during the day by sunlight and then it emits light during night time.

“The nano material is of such a nature that it can be mixed with materials, such as paint or cement. The yellow lines of roads can for example emit light in a natural way during night time,” said Prof Swart.

About a year ago Prof Swart and Dr Thembela Hillie, a former Ph D-student of the UFS Department of Physics, had discussions with Prof Neerich Revaprasadu from the University of Zululand and the CSIR about the possibility of mixing these nano phosphor particles with other materials that can be used as light sources in the building of roads and houses.

“Prof Revaprasadu is also actively involved in the research of nano materials.  Our efforts resulted in the CSIR approving the further extension of the project,” said Prof Swart.   

“The UFS and the University of Zululand are currently busy investigating ways to extend the light emitting time,” said Prof Swart.  

“There are eight M Sc and Ph D-students from the UFS and about five students from the University of Zululand working on this research project.  The Department of Physics at the Qwaqwa Campus of the UFS, with Francis Dejene as subject head, is also involved with the project,” said Prof Swart.

According to Prof Swart the further applications of nano materials are unlimited.  “Children whose parents cannot afford electricity can for instance leave any object such as a lamp, that is covered with these phosphor particles, in the sun during the day and use it at night as a light for study purposes,” said Prof Swart.

According to Prof Swart the further extension of the project will take about two years.  “During this time we want to determine how the effectiveness of the phosphors can be increased.  Discussions with the government and other role players for the possible implementation of the project are also part of our planning,” said Prof Swart.


Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
6 June 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept