Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 July 2021 | Story Nonsindiso Qwabe | Photo Nonsindiso Qwabe
On top of the Drakensberg. The ARU and Witsieshoek Mountain Lodge research team are, from the left: Grant Martin, Dr Ralph Clark, Jan van Niekerk, Prof Aliza le Roux, Prof Peter Taylor, and Dr Sandy Steenhuisen.

All mountains around the world have native and non-native species that are expanding their ranges quite dramatically; however, little research has been conducted towards understanding the long-term redistribution of species and the effects of global change on biodiversity.


The Afromontane Research Unit (ARU) on the University of the Free State Qwaqwa Campus – as part of the Mountain Invasion Research Network – has secured a two-year EU Horizon 2020 project under the Department of Science and Innovation, which will be looking at the mechanisms underlying the success and impact of range-expanding species on biodiversity and ecosystem functioning.

On Monday 19 July 2021, the ARU took a few of its researchers on a scenic helicopter ride to the summit of the Drakensberg for an alpine field-experiment site inspection of the Mont-aux-Sources peak, one of the highest sections of the Drakensberg range. This site has been identified for the project which the research unit will be leading on mountain research.

ARU Director, Dr Ralph Clark, said the project would explore the effects of global change, biological invasions (when species invade new geographic regions), as well as climate and land-use change. He said experiments were needed to explore the various possibilities and to test the extent to which species respond to experimental treatments. The project would therefore be conducting experiments for two years using open-top chambers – causing an increase in temperature of 3 or 4 degrees to what you find naturally – on plant species from lower down to the top of the mountain, to see how they function. “This will give us an idea of whether they will be able to survive in global warming scenarios. If temperatures get warmer, we might start seeing a lot of plants up here that we wouldn’t otherwise find here.”

Dr Clark said little is known about the long-term monitoring of species distribution and the effects of global change. Implementing the project in the Maloti-Drakensberg alpine area will therefore put the area in the global mountain research arena. The elevational gradient in the Maloti-Drakensberg Mountains provides space to explore the key processes underlying the variation in species elevation with climate change. “One of the things we don’t know much about are alpine systems. We are hoping to establish a long-term alpine research site and try to add as many studies as we can. The more science we can bring up here, the more we can know about mountain life. What happens on mountains has a lot of impact on social dynamics.

“This project is looking to see what is driving range expansion. Every mountain has its own context. In the Swiss alpine, fires are not a big factor, but fires are one of the biggest factors on our mountains. Some of our native and non-native species are therefore fire-driven, so as fire increases, you might have them spreading faster.”

Listen to the article:

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept