Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 July 2021 | Story Nonsindiso Qwabe | Photo Nonsindiso Qwabe
On top of the Drakensberg. The ARU and Witsieshoek Mountain Lodge research team are, from the left: Grant Martin, Dr Ralph Clark, Jan van Niekerk, Prof Aliza le Roux, Prof Peter Taylor, and Dr Sandy Steenhuisen.

All mountains around the world have native and non-native species that are expanding their ranges quite dramatically; however, little research has been conducted towards understanding the long-term redistribution of species and the effects of global change on biodiversity.


The Afromontane Research Unit (ARU) on the University of the Free State Qwaqwa Campus – as part of the Mountain Invasion Research Network – has secured a two-year EU Horizon 2020 project under the Department of Science and Innovation, which will be looking at the mechanisms underlying the success and impact of range-expanding species on biodiversity and ecosystem functioning.

On Monday 19 July 2021, the ARU took a few of its researchers on a scenic helicopter ride to the summit of the Drakensberg for an alpine field-experiment site inspection of the Mont-aux-Sources peak, one of the highest sections of the Drakensberg range. This site has been identified for the project which the research unit will be leading on mountain research.

ARU Director, Dr Ralph Clark, said the project would explore the effects of global change, biological invasions (when species invade new geographic regions), as well as climate and land-use change. He said experiments were needed to explore the various possibilities and to test the extent to which species respond to experimental treatments. The project would therefore be conducting experiments for two years using open-top chambers – causing an increase in temperature of 3 or 4 degrees to what you find naturally – on plant species from lower down to the top of the mountain, to see how they function. “This will give us an idea of whether they will be able to survive in global warming scenarios. If temperatures get warmer, we might start seeing a lot of plants up here that we wouldn’t otherwise find here.”

Dr Clark said little is known about the long-term monitoring of species distribution and the effects of global change. Implementing the project in the Maloti-Drakensberg alpine area will therefore put the area in the global mountain research arena. The elevational gradient in the Maloti-Drakensberg Mountains provides space to explore the key processes underlying the variation in species elevation with climate change. “One of the things we don’t know much about are alpine systems. We are hoping to establish a long-term alpine research site and try to add as many studies as we can. The more science we can bring up here, the more we can know about mountain life. What happens on mountains has a lot of impact on social dynamics.

“This project is looking to see what is driving range expansion. Every mountain has its own context. In the Swiss alpine, fires are not a big factor, but fires are one of the biggest factors on our mountains. Some of our native and non-native species are therefore fire-driven, so as fire increases, you might have them spreading faster.”

Listen to the article:

News Archive

Research into surrogate milk important to wildlife conservation
2017-05-08

Description: Prof Garry Osthoff  Tags: Prof Garry Osthoff

Prof Gary Osthoff from the UFS Department of
Microbial, Biochemical and Food Biotechnology,
will soon work on a milk formula for elephants.
Photo: Supplied

Research is being done at the University of the Free State (UFS) to analyse and synthetically imitate the unique milk of various wildlife species. This research is not only of scientific value, but also serves the conservation of South Africa’s wildlife species. At the forefront of this research is Prof Garry Osthoff from the Department of Microbial, Biochemical and Food Biotechnology.

Orphaned rhino calf pulled through with surrogate milk

“There is still a lot of research to be done. Naturally the research is of scientific importance, but with surrogate milk having the same composition as the mother’s milk of a specific species, orphaned calves or cubs of that species could be pulled through during a difficult time of weaning. Bearing in mind that exotic animals fetch thousands and even millions of rands at auctions, it goes without saying a game farmer will do everything possible to provide only the best nourishment to such an orphaned animal. In such a case, synthetically-manufactured milk would be the right choice,” says Prof Osthoff.

The fruits of his research were recently demonstrated in Germany when a rhino calf was left orphaned in the Leipzig Zoo. Prof Osthoff’s article: “Milk composition of a free-ranging white rhinoceros during late lactation” was used as a directive for applying surrogate milk for horse foals (which is already commercially available), since the composition of horse and rhino milk largely corresponds. The surrogate milk was used with great success and the rhino calf is flourishing. He mentions that such an orphan is often given the wrong nourishment with the best intentions, resulting in the starvation of the animal despite the amount of cow’s milk it devours.

With surrogate milk having the same
composition as the mother’s milk of a
specific species, orphaned calves or
cubs of that species could be pulled
through during the difficult time
of weaning.

Milk formula for baby elephants in the pipeline
With baby elephants left orphaned due to the increase in elephant poaching for their ivory, several attempts have been made to create a milk formula in order to feed these elephants. To date, many elephants have died in captivity from side effects such as diarrhoea as a result of the surrogate formula which they were fed.

Prof Osthoff recently received a consignment of frozen milk which he, together with researchers from Zimbabwe, will use to work on a milk formula for elephants. They are studying the milk in a full lactation period of two years. During lactation, the composition of the milk changes to such an extent that a single surrogate formula will not be sufficient. Four different formulas should probably be designed.

Prof Osthoff says that of the different species he has researched, elephants are the most interesting and deviate most from the known species.

Although his research to develop surrogate milk is adding much value to the wildlife industry, and although he finds this part of his work very exciting, his research focus is on food science and nutrition. “What is currently authentic in milk research is the study of the fat globules with content, the structure and composition of the casein micelle, and the prebiotic sugars. The knowledge which is gained helps to improve the processing, development of new food products, and development of food products for health purposes,” says Prof Osthoff.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept