Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 July 2021 | Story Leonie Bolleurs | Photo Supplied
According to Prof Gerhard Bosman (bottom left), the biggest advantage of the COIL exchange for Architecture students was their cultural and online collaboration development while addressing urban diversity, multiplicity, and complexity in the built environment. During an online engagement between academics, were from the left: Prof Mark DeBoer and Prof Chiara De Santi; and bottom, right: Prof Carlo Citter.

In South Africa, student exchange programmes – especially at undergraduate level – remain extremely limited. The national Policy Framework for Internationalisation of Higher Education in South Africa, however, makes internationalisation of the curriculum mandatory and directs that it ‘must not negate curriculum transformation imperatives which higher education institutions in South Africa have an obligation to fulfil'.

The University of the Free State (UFS), through its Office for International Affairs, coordinates the iKudu project, which seeks to transform curricula through internationalisation and virtual exchanges. iKudu, a Capacity Building for Higher Education (CBHE) project, is funded by the European Union’s Erasmus+ programme with EUR999 881 (approximately R20 million) and is implemented over a three-year period. Partner universities in the project are the South African Central University of Technology, Durban University of Technology, University of Limpopo, and University of Venda, with the University of Antwerp, Amsterdam University of Applied Sciences, The Hague University of Applied Sciences, Coventry University, and the University of Siena the European partners in the project.

The dream

According to Cornelius Hagenmeier, Director of the UFS Office for International Affairs, at least 50 academics and 5 250 students from South Africa and Europe will participate in the project through the collaborative online international learning (COIL) exchange model. Academics are receiving training on accredited courses in a virtual setting where the classrooms (each located in a different country or cultural setting) of two or more higher education institutions are linked, working with colleagues from partner universities to implement COIL virtual exchanges for the benefit of their students. 

He says: “Students with different cultural and geographical perspectives and experiences have the opportunity to learn from each other through cross-cultural dialogue, bringing a global dimension to the course content. Apart from developing the intercultural competence, technological skills, and the ability to work in groups, students also enhance their employability.”

Another major advantage of this model is that it gives effect to the South African Policy Framework by contributing to internationalisation at home through purposeful integration of international and intercultural dimensions into the formal curriculum. 

Hagenmeier believes that, besides a transformed curriculum at all partner universities, this process will also influence policy development at national and regional level.  

The opportunity

BArchHons students from the History of Urban Settlement module in the UFS Department of Architecture are but one example of a group of students who benefited from the exchange programme. UFS associate professor and researcher in Earth Architecture, Prof Gerhard Bosman, collaborated with academics from Italy, Japan, and the USA to engage with 85 students across four continents. 

From the University of Siena, Italy, Prof Carlo Citter, an associate professor in Medieval Archaeology, participated in the programme. He was joined by Prof Mark deBoer, a lecturer from the English for Academic Purposes (EAP) programme at the Akita University in Japan, and Prof Chiara De Santi, an assistant professor of Modern Languages, teaching film and cultural courses in English and Italian at the Farmingdale State College in the USA.

Prof Bosman says the COIL exchange programme, which started on 12 April 2021, was executed in three parts. He shares his account of the nine-week journey: “After students introduced themselves on Padlet, they were divided into twelve teams to collaborate in groups of seven to eight students (while creating a digital presence on Google Drive) to discuss, explore, and reflect on the urban environment and the portrayal of society during war/the aftermath of a war as depicted in a selected main steam film. Six weeks later, the groups had to submit final video and slide presentations on these topics. In the last part of the exchange programme – where students benefited from the perspectives of academics in four different cultures – a group and individual assessment reflecting the course discipline of the four student groups had to be accommodated. 

Overcoming challenges

The process unfortunately also had its challenges. Due to the time difference at most of the institutions, students found it difficult to meet. They also had to overcome the language differences, since not all students at the four institutions were English first-language speakers. However, the use of Google Meet (an online tool) with its English caption function helped individuals to follow the text from English voices.

As academics and students worked through the challenges, Prof Bosman confirmed that the COIL exchange programme has significant advantages. He states that the biggest advantage of the COIL exchange for Architecture students was their cultural and online collaboration development while addressing urban diversity, multiplicity, and complexity in the built environment. 

A follow-up COIL exchange between the four new partner universities in 2022 is well underway in the development and planning phases.

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept