Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 June 2021 | Story Dr Patricks Voua Otomo
Dr Patricks Voua Otomo
Dr Patricks Voua Otomo is the Head of the Ecotoxicology Research Laboratory and Subject Head: Zoology and Entomology in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS).

The month of June is earmarked for the celebration of National Environment Month, with the South African government and captains of industry leading the way by stimulating awareness on environmental issues and challenging everyone to become agents for change. World Environment Day, the biggest annual event of the United Nations Environment Programme (UNEP), is commemorated on 5 June, with the aim of galvanising positive environmental action. The University of the Free State (UFS) – through researchers from the Afromontane Research Unit (ARU) housed on the Qwaqwa Campus of the UFS – is playing its part in the fight against pollution, and especially water pollution in the eastern Free State.

The ARU initiated a research project in 2021, focusing on the assessment of the quality of local natural water resources in order to foster sustainable development in Phuthaditjhaba, and because of the recurring challenges pertaining to water quality and quantity in the Maluti-a-Phofung (MAP) Local Municipality. For the first such project focusing exclusively on pollution issues in a select Afromontane region – led by Dr Patricks Voua Otomo, Head of the Ecotoxicology Research Laboratory and Subject Head: Zoology and Entomology in the Faculty of Natural and Agricultural Sciences – a vibrant team of ARU scientists and students set out to determine the ecotoxicological and bacteriological state of water resources in MAP. With the permission of MAP, ARU researchers and students were allowed access to municipal wastewater treatment plants in the towns of Phuthaditjhaba and Harrismith, and ethical clearance from the UFS permitted limited environmental sampling and laboratory testing using live organisms such as snails and earthworms.

Focusing on the quality of natural water bodies
In November 2016, Ms Portia Mosolloane (2016 honours student) presented the preliminary findings of the project at an ARU colloquium held in the Golden Gate Highlands National Park. Her work has drawn attention to potential localised incidents of terrestrial contamination linked to sewage sludge management in the region. Those early findings were published internationally, and in May 2018, Ms Mosolloane went on to present her research at the 28th Annual Meeting of the Society of Environmental Toxicology and Chemistry (SETAC) in Rome, Italy.

In an attempt to mitigate sewage sludge-induced soil pollution, Ms Nomasonto Dlamini (master’s student) conducted research from 2018 on the potential beneficial effects of biochar amendment on the sewage sludge as an alternative management strategy. The results revealed that mixing biochar with sewage sludge prior to open-air storage would significantly decrease the toxic effects on terrestrial organisms such as oligochaetes. This work is still ongoing, although in May 2019, Ms Dlamini presented some of her findings at the Fifth World Congress on Risk Development and Resilience in Cape Town.

From the start, an important focus of our research has been the quality of natural water bodies in our region and its ability to support life. In 2020, Ms Mosolloane graduated cum laude with a Master of Science, having successfully established that, particularly along polluted and degraded sections of our rivers, the diversity of riparian invertebrate was heavily skewed and reduced. Her work on water quality has suggested that our failing wastewater treatment plants (due to ageing, capacity overload, and poor management) are contributing to the release of pathogenic bacteria such as Escherichia coli in the local rivers.

Mr Mbuyiselwa Moloi (a 2020 Master of Science graduate from the project) found through his research that wastewater treatment plants only contribute partially to river pollution in the region. His work, focusing on metal pollution in the Elands River (Phuthaditjhaba) and the Wilge River (Harrismith), established that although there is evidence of metal enrichment after wastewater processing by the treatment plants, some of the metal in the rivers emanates from the communities that, due to the lack of adequate refuse removal services, often dispose of their household waste directly into the rivers. Mr Moloi’s research was presented at the 2019 International Mountain Conference in Innsbruck, Austria, and was subsequently published in the International Journal of Hygiene and Environmental Health in 2020.

Ms Matseleng Semase (a 2020 Master of Science graduate from the project) worked on establishing whether the quality of the effluent released from the local wastewater treatment plants was conducive to supporting aquatic life. Using a snail species in the laboratory, she found that although of substandard quality, the effluent released from the treatment plants did not hamper growth and reproduction in her test organism. This pointed to the fact that corrective measures could still be taken to reduce the harmful impact of wastewater management processes on river health in the eastern Free State. Ms Semase’s work was presented at the 9th SETAC Africa Biennial Conference held in Cape Town in 2019, and her findings were submitted for publication in Environmental Science and Pollution Research.

First such project focusing exclusively on pollution issues
Some of our findings infused new life into the project, steering our work in unexpected directions. Early in the project we came to realise that there was a paucity of research focusing on pollution in mountain areas in South Africa and in Africa at large. Mr Hendrik Stander joined the project in 2019 as a master’s student. His task was to work on the development of fast and reliable behavioural testing protocols that could be used in the project. His preliminary findings were presented at the 40th annual meeting of SETAC North America in Toronto, Canada, and were subsequently published in the Bulletin of Environmental Contamination and Toxicology. Ms Sanele Mnkandla, who joined the project as a PhD candidate in 2020, is working on proposing water remediation strategies that could help improve the state of the rivers in the region. She recently submitted a review article on the topic for publication in Environmental Evidence. Another review article in the making and focusing on literature evidence of mountain pollution in Africa, is the brainchild of Dr Ozekeke Ogbeide, a collaborator from the University of Benin (Nigeria), who co-supervised several students and co-authored some of the scientific publications from the project.

This ongoing research, under the auspices of the ARU, is the first such project focusing exclusively on pollution issues in a select Afromontane region. With Ms Dlamini, Mr Stander, and Ms Mnkandla still actively involved in the project, we look forward to finding more answers to the environmental challenges of the eastern Free State and to working together with MAP towards environmental sustainability in the region.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept