Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 June 2021 | Story Dr Patricks Voua Otomo
Dr Patricks Voua Otomo
Dr Patricks Voua Otomo is the Head of the Ecotoxicology Research Laboratory and Subject Head: Zoology and Entomology in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS).

The month of June is earmarked for the celebration of National Environment Month, with the South African government and captains of industry leading the way by stimulating awareness on environmental issues and challenging everyone to become agents for change. World Environment Day, the biggest annual event of the United Nations Environment Programme (UNEP), is commemorated on 5 June, with the aim of galvanising positive environmental action. The University of the Free State (UFS) – through researchers from the Afromontane Research Unit (ARU) housed on the Qwaqwa Campus of the UFS – is playing its part in the fight against pollution, and especially water pollution in the eastern Free State.

The ARU initiated a research project in 2021, focusing on the assessment of the quality of local natural water resources in order to foster sustainable development in Phuthaditjhaba, and because of the recurring challenges pertaining to water quality and quantity in the Maluti-a-Phofung (MAP) Local Municipality. For the first such project focusing exclusively on pollution issues in a select Afromontane region – led by Dr Patricks Voua Otomo, Head of the Ecotoxicology Research Laboratory and Subject Head: Zoology and Entomology in the Faculty of Natural and Agricultural Sciences – a vibrant team of ARU scientists and students set out to determine the ecotoxicological and bacteriological state of water resources in MAP. With the permission of MAP, ARU researchers and students were allowed access to municipal wastewater treatment plants in the towns of Phuthaditjhaba and Harrismith, and ethical clearance from the UFS permitted limited environmental sampling and laboratory testing using live organisms such as snails and earthworms.

Focusing on the quality of natural water bodies
In November 2016, Ms Portia Mosolloane (2016 honours student) presented the preliminary findings of the project at an ARU colloquium held in the Golden Gate Highlands National Park. Her work has drawn attention to potential localised incidents of terrestrial contamination linked to sewage sludge management in the region. Those early findings were published internationally, and in May 2018, Ms Mosolloane went on to present her research at the 28th Annual Meeting of the Society of Environmental Toxicology and Chemistry (SETAC) in Rome, Italy.

In an attempt to mitigate sewage sludge-induced soil pollution, Ms Nomasonto Dlamini (master’s student) conducted research from 2018 on the potential beneficial effects of biochar amendment on the sewage sludge as an alternative management strategy. The results revealed that mixing biochar with sewage sludge prior to open-air storage would significantly decrease the toxic effects on terrestrial organisms such as oligochaetes. This work is still ongoing, although in May 2019, Ms Dlamini presented some of her findings at the Fifth World Congress on Risk Development and Resilience in Cape Town.

From the start, an important focus of our research has been the quality of natural water bodies in our region and its ability to support life. In 2020, Ms Mosolloane graduated cum laude with a Master of Science, having successfully established that, particularly along polluted and degraded sections of our rivers, the diversity of riparian invertebrate was heavily skewed and reduced. Her work on water quality has suggested that our failing wastewater treatment plants (due to ageing, capacity overload, and poor management) are contributing to the release of pathogenic bacteria such as Escherichia coli in the local rivers.

Mr Mbuyiselwa Moloi (a 2020 Master of Science graduate from the project) found through his research that wastewater treatment plants only contribute partially to river pollution in the region. His work, focusing on metal pollution in the Elands River (Phuthaditjhaba) and the Wilge River (Harrismith), established that although there is evidence of metal enrichment after wastewater processing by the treatment plants, some of the metal in the rivers emanates from the communities that, due to the lack of adequate refuse removal services, often dispose of their household waste directly into the rivers. Mr Moloi’s research was presented at the 2019 International Mountain Conference in Innsbruck, Austria, and was subsequently published in the International Journal of Hygiene and Environmental Health in 2020.

Ms Matseleng Semase (a 2020 Master of Science graduate from the project) worked on establishing whether the quality of the effluent released from the local wastewater treatment plants was conducive to supporting aquatic life. Using a snail species in the laboratory, she found that although of substandard quality, the effluent released from the treatment plants did not hamper growth and reproduction in her test organism. This pointed to the fact that corrective measures could still be taken to reduce the harmful impact of wastewater management processes on river health in the eastern Free State. Ms Semase’s work was presented at the 9th SETAC Africa Biennial Conference held in Cape Town in 2019, and her findings were submitted for publication in Environmental Science and Pollution Research.

First such project focusing exclusively on pollution issues
Some of our findings infused new life into the project, steering our work in unexpected directions. Early in the project we came to realise that there was a paucity of research focusing on pollution in mountain areas in South Africa and in Africa at large. Mr Hendrik Stander joined the project in 2019 as a master’s student. His task was to work on the development of fast and reliable behavioural testing protocols that could be used in the project. His preliminary findings were presented at the 40th annual meeting of SETAC North America in Toronto, Canada, and were subsequently published in the Bulletin of Environmental Contamination and Toxicology. Ms Sanele Mnkandla, who joined the project as a PhD candidate in 2020, is working on proposing water remediation strategies that could help improve the state of the rivers in the region. She recently submitted a review article on the topic for publication in Environmental Evidence. Another review article in the making and focusing on literature evidence of mountain pollution in Africa, is the brainchild of Dr Ozekeke Ogbeide, a collaborator from the University of Benin (Nigeria), who co-supervised several students and co-authored some of the scientific publications from the project.

This ongoing research, under the auspices of the ARU, is the first such project focusing exclusively on pollution issues in a select Afromontane region. With Ms Dlamini, Mr Stander, and Ms Mnkandla still actively involved in the project, we look forward to finding more answers to the environmental challenges of the eastern Free State and to working together with MAP towards environmental sustainability in the region.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept