Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

Quantity Surveying and Construction Management department aspires to excellence
2017-08-14

Description: Prof Kahilu Kajimo-Shakantu Tags: Prof Kahilu Kajimo-Shakantu 

From the left: Prof Danie Vermeulen, Dean of the
Faculty of Natural and Agricultural Sciences;
Prof Kahilu Kajimo-Shakantu, Head of the Department
of Quantity Surveying and Construction Management;
Prof Francis Petersen, Rector and Vice-Chancellor
at the UFS; and Dr Franco Geminiani, chairing the
panel from the South African Council for the Project
and Construction Management Professions.
Photo: Leonie Bolleurs

Achieving programme accreditation from the respective professional bodies is the ultimate goal for the Department of Quantity Surveying and Construction Management at the University of the Free State (UFS). This is according to Prof Kahilu Kajimo-Shakantu, the head of this department. This hallmark of quality reflects the university’s aspiration towards excellence.

Construction Management programmes reviewed
The university recently received a visit by a panel, representing the South African Council for the Project and Construction Management Professions (SACPCMP) to re-accredit programmes offered by the Department of Quantity Surveying and Construction Management. During the accreditation visit, the panel evaluated the programmes to determine whether they met the minimum requirements according to a set of pre-determined criteria.

When reviewing the programmes: BSc and BSc Hons Construction Management respectively, as well as the Project Management stream of the Masters programme in Land and Property Development Management (MLPM), the panel looked at programme design and outcomes including curriculum, study material and exam papers, institutional support, student recruitment, admission, development, retention and throughput, staffing recruitment and development, teaching and learning strategies, quality assurance, facilities, infrastructure and resources, professional development, industry and practical exposure and postgraduate policies, procedures and regulations, including research activities.

If the minimum requirements are achieved, the Department of Quantity Surveying and Construction Management at the UFS will receive accreditation for its programmes from 1 April 2017 to 31 March 2022.

It will also mean that we are certified
as producing quality employable
graduates who are well prepared to
enter the industry and make a difference.

Currently, the department has full accreditation by the SACPCMP (until March 2017) and the SACQSP (until December 2017).

Later this month, a panel from the South African Council for Property Valuation Profession (SACPVP) will review the accreditation of the Valuation stream of the MLPM programme. The South African Council for Quantity Surveying Profession responsible for accrediting the Quantity Surveying programmes will visit the university in 2018.

Certified as producing quality students

Prof Kajimo-Shakantu said: “If we maintain our accreditation, it will reflect that the UFS is among the best, with programmes which are recognised by professional bodies that set competence standards for professional registration of students. It will also mean that we are certified as producing quality employable graduates who are well prepared to enter the industry and make a difference. The programmes contribute to the development of the much-needed critical skills in the built environment.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept