Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

Victory lies beyond the moment
2017-12-25


 Description: 2017 Victory lies beyond the moment Tags: 2017 Victory lies beyond the moment 

Mokoena learns a new skill at the Learning Festival arranged
by the Centre for Community Engagement.
Photo: Igno van Niekerk

For Mokoena it was just a regular day. Another day. Another rush. As a taxi driver you get used to the adrenaline, taking gaps, foot on the accelerator. Alert. Honking hooters. Angry drivers.

Then it came out of nowhere. A stroke. The one side of his body was going numb. What was happening? What about his job? His income? His life?

Fast-forward a few years.

I meet Mokoena at the Learning Festival arranged by the Centre for Community Engagement, in association with Bloemshelter on the University of the Free State’s Bloemfontein Campus. A reserved young man, Mokoena is busy at one of the stands where a range of people from rural communities come to learn new skills. At no cost. They then go back to teach the skills they learnt in their communities. Job creation, that’s the philosophy: as you develop, you need to develop others. 

When I talk to Karen Venter, Head of Service Learning at the Centre for Community Engagement, the stories are overwhelming. “There was the lady who attended 19 workshops in two days. She went back to her community, shared her knowledge and became an entrepreneur helping others take care of themselves.”

New skills
Mokoena is also here to acquire new skills. After his stroke he was told by occupational therapy students about a project that teaches you to build your own house with raw materials. He takes out his cellphone with a sense of pride. Scrolls through some pictures: “This is my house. I built it from all kinds of things, cow manure, bottles, clay, other people’s rubbish.” The pictures show a house in a neat environment. Solid. Proud. A lot of healing came with building the house. Karen explains: “The physical work he was doing, pushing a wheelbarrow and working, but more than that – the knowledge that he could take charge, make a difference, work on a dream – the healing power of a sense of purpose. He became stronger and more confident.”

Victory 
Mokoena walks back to the sewing workshop he was attending before sharing his story. The buzz continues inside the Equitas Building where artisans, entrepreneurs and UFS staff are sharing their skills. Sewing machines hum away and infrequent beeps sound from a table where an excited group of non-scientists have just completed the building of circuits. Faces light up with every beep. Hands raised. Fists clenched. Victory!

But the victory lies beyond the moment. It’s in the confidence, the learning, and the sharing that will be taking place when these people go back to their communities. Some will participate in research projects; others will benefit from curricular requirements leading students into distant communities, and others will be hosting workshops at the next Learning Festival. 

And there will be more great stories. Like Mokoena’s.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept