Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

UFS academics present papers at major conference
2009-07-23

 
Pictured from the left are: Prof Neethling, Prof Edna van Harte (Dean of the Faculty of Military Science, Stellenbosch University), Dr Thomas Mandrup (from the Royal Danish Defence College and co-organiser of the conference), and Prof Heidi Hudson.
Photo: Supplied


Prof Theo Neethling from the Department of Political Science was recently invited to address a conference on the theoretical basis for states’ use of military instruments of force and scholarly progress in the understanding of armed conflict in Africa held at Stellenbosch University (SU) on 11 and 12 June 2009. This conference, themed Strategic Theory and Contemporary Africa Conflicts, was presented by the Faculty of Military Science of SU in collaboration with the Faculty of Military and Strategic Studies of the Royal Danish Defence College in Copenhagen. The conference was premised on the point that the way in which states choose to become involved in, orchestrate or oppose armed conflicts in terms of peace intervention action, normally originates from theoretical thinking well-grounded in a national strategy. This was the first conference in South Africa that focused on the nature of such a national strategy, but also on how the incidence of recent armed conflicts in Africa could be explained in terms of this theoretical thinking. In view of this Prof Neethling’s paper was titled, “UN peacekeeping operations in Africa: Reflections on developments, trends and the way forward”. His paper focused on recent and current UN peacekeeping operations with special reference to multinational challenges in the African context.


Prof. Heidi Hudson from the Centre for African Studies also attended the conference in Stellenbosch on Strategic Theory and Contemporary Africa Conflicts. In addition she was invited to present a paper at the Peacekeeping Africa 2009 conference held on 24 and 25 June 2009 at Gallagher Estate, Midrand. The event brings together individuals who are experts in defence, peacekeeping, policing, foreign service and other government bodies to share knowledge and to discuss the latest developments. This year’s conference was attended by more than 100 experts from all over Africa, with strong representation from the UN and the International Red Cross. Prof. Hudson’s paper was entitled “Peacebuilding through a gender lens”. Her presentation examined lessons learnt with regard to implementation of a gender perspective in Côte d’Ivoire and Rwanda. These case studies point towards an empirical link between women’s inclusion in peace processes and the quality of peace finally achieved. Prof. Hudson warned that inattention to the differential needs of both women and men during conflict and in the post-conflict reconstruction phase may perpetuate the violence discourses which sustained the conflict in the first place.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept