Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

UFS academic appointed as team doctor for SA Olympic Team
2012-03-22

 

Dr Holtzhausen’s appointment reflects well on the quality of exercise and sports medicine presented at the university.
20 March 2012

Dr Louis Holtzhausen, Head of the university’s Department of Sports and Exercise Medicine, has been selected by the South African Sports Confederation and Olympic Committee (Sascoc) as team doctor for the more than 300 athletes that will represent South Africa at this year’s Olympic Games in London.

“This is definitely one of the most important highlights of my career, in which I’ve worked with professional athletes and top sporting people,” says Dr Holtzhausen, a recognised South African academic in Sports Medicine.

“It is not only an honour to be appointed as team doctor for the South African Olympic Team. It is also a privilege to represent the UFS. The fact that Sascoc approached me reflects well on the quality of exercise and sports medicine that we present here at the university,” says Dr Holtzhausen.

Dr Holtzhausen says he has already worked with some of the athletes in the Olympic Team. These include members of the South African boxing team, the hockey team, as well as track and field athletes that have been preparing for the Olympic Games at the university’s High Performance Unit.

There is, however, hard work ahead for Dr Holtzhausen. His work will start before the team leaves for London in July. “I have to ensure that all the athletes are healthy and that everyone’s immunisation programmes are up to date. We also have to ensure that no athlete takes banned substances,” he says.

During the Games, Dr Holtzhausen will keep an eye on the optimal functioning of every athlete. “Anything that could hamper them medically will be sorted – whether it’s a broken ankle or a cold,” he says.

He will also see to it that medical services are available during the competition. Immediate medical assistance will be available, especially at high contact sports like boxing.

Dr Holtzhausen has also been team doctor for Team South Africa at the All Africa Games, the biggest sporting event in Africa. He was recently appointed as a member of the International Committee and Coordinator for Africa of the worldwide Exercise is Medicine project. This project proposes that exercise be used in the prevention of chronic disease in the general population, as well as in the treatment of people with existing chronic diseases. Dr Holtzhausen is also an honorary member of the South African Sports Medicine Association (SASMA). This membership is awarded to members of the medical and scientific community who make significant contributions to the advancement of sports medicine.

Dr Holtzhausen is a member of the Vice-Chancellor’s Prestige Scholars Programme.
The goal with the Prestige Scholars Programme is to select no more than 100 of the most promising young scholars (typically holding lecturer status) and to make substantial investments in their development towards the professoriate. A tailored, intensive programme of support has been designed which combines international placement working alongside leading scholars in the discipline of the prestige scholar, with intensive mentorship and support from within the university.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept