Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

Open Day engulfs Bloemfontein Campus with colour, crowds and cheer
2013-05-04

 

08 May 2013
Photo: Lelanie de Wet


   Open Day YouTube video

The procession – comprising of Prof Jonathan Jansen and the Deans of all the UFS faculties – stately entered a packed Callie Human Centre on Saturday morning 4 May 2013. As everyone took their seats, all the lights were abruptly cut, leaving the hall in a stunned silence. Suddenly brilliant beams of green, blue and red lights cut through the dark, exploding into a spectacular laser show.

Open Day 2013 on the Bloemfontein Campus was officially under way.

The audience of parents and prospective students were awe-struck by a transfixing electric guitar performance, dancers lit up by LED suits, pulsing music and finally Corneil Muller singing to the accompaniment of Prof Jansen behind the piano.

Vice-Chancellor and Rector, Prof Jansen immediately made attendees from across all nine provinces, Namibia, Lesotho and several other countries feel at home and embraced by the university. During his welcoming address, Prof Jansen referred to the fact that Kovsies places the bar high when it comes to achievement. “We expect more of our students,” he said. “Passing is not important, passing wéll is important.” He stressed that at the university we teach students to be decent, to be exceptional people. “We place a high premium on being an outstanding human being.” He went on to say that our students are better than the previous generation – they do not carry the baggage of the old.

Prof Jansen also communicated the university’s commitment to developing leaders with an understanding of the world. This is why the university afford students the opportunity, amongst other things, to study abroad. Students have access to a wide variety of organisations and the privilege to have access to leaders who they can converse with. Kovsies strives to produce leaders, not only in the community, but on a global platform.

To demonstrate this last point, top Kovsie achievers joined Prof Jansen on stage to relay their stories of perseverance, courage and success. Included among these stars, were athlete Danél Prinsloo; Varsity Cup Player that Rocks 2013 Oupa Mohoje; DW Bester, a Rhodes Scholar currently studying at Oxford University in the United Kingdom; and Jurie Swart, who ranked under the top five in the 2012 International Graduate Architecture Student Design competition.

The residences pulled out all stops when it came to the presentation of their individual stalls. The gardens in front of the Main Building burst with colour, sound, dancing and laughter as the residences competed to draw the most visitors. The faculties also opened their doors for a glimpse at the exciting opportunities awaiting prospective students.

A record amount of visitors went home with the words of Rudi Buys, Dean of Student Affairs, inscribed in their minds summing up what the UFS is all about: “Where a sense of community matters more than the colour of your skin.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept