Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

International speakers discuss diversity
2014-02-11

 
Dr Charles Alexander from UCLA
Photo: O'Ryan Heideman

International and local experts recently gathered on the Bloemfontein Campus to deliberate over the topic of diversity.

Student participation and mobility dramatically increased in higher education worldwide. Cultural, political, economic and social factors on a national and global scale, have brought the reality of diversity into the operational spaces of Higher Education Institutions. These challenges are not exclusive to South Africa, though. In the Netherlands and USA, universities are also challenged by the demands of an increasingly diverse student population.

Prof Jonathan Jansen, Vice-Chancellor and Rector of the UFS, acted as one of the keynote speakers during a two-day colloquium hosted by the Institute for Reconciliation and Social Justice. In an impelling address, Prof Jansen argued that change cannot be affected on a university campus if the surrounding community does not change as well. He also noted the spread of a culture of silence surrounding issues of misbehaviour. He urged that we need to find courage again to speak out. From the level of government, media and churches to the private spaces of our homes, we have to co-create an environment of care.

This message closely tied in with that of Prof Shirley Tate’s from the University of Leeds. In her keynote, she asserted that mere tolerance of someone different from you can lead to even more alienation. The path to true reconciliation is grounded in the intimacy of friendship. Friendship and empathy lead to trust and transcend racism.

Another keynote speaker from abroad, Dr Charles Alexander from the University of California, delineated a model for inclusive excellence. He explained that the major problem of true transformation is not due to a lack of ideas, but in the implementation thereof. “Realities of implementation short circuit the change process,” he said. He explained how campus environments can adapt in order to support and enhance lasting inclusivity.

We have to become complicit in the process of transformation, Prof Dr Ghorashi, Professor of Diversity and Integration at the Vrije Universiteit Amsterdam, conveyed. Linking up with the issue of silence, she demonstrated the power of speaking out, using examples from her extensive research among victims of violence. It is imperative, she maintains, that for transformation to materialise, we need to create safe spaces in which we can share our vulnerabilities.

Footnote: Due to unfortunate circumstances, both Prof Dr Ghorashi and Prof Shirley Tate could not personally attend the colloquium as planned. Their respective keynotes were read to the audience on their behalf.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept