Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

UFS acts fast in expelling students for serious misconduct
2014-02-22

On the evening of Monday 17 February 2014, Muzi Gwebu, a fifth-year student in BCom Economics, while walking on the Bloemfontein Campus of the UFS, was side-swiped by a vehicle driving recklessly through campus. He followed the vehicle where it stopped at one of the residences and approached the two occupants. A confrontation started and he was assaulted by one of the occupants of the vehicle.

Gwebu sustained minor injuries and was immediately assisted by the university’s residence life division. He lodged a complaint of assault at the South African Police Service (SAPS).

The senior leadership of the UFS is shocked and outraged at this blatant act of violence against one of its students. The Vice-Chancellor and Rector, Prof Jonathan Jansen, says: “We regard this incident in a very serious light and we worked closely with the SAPS throughout the night to identify and locate the perpetrators who were driving with false number plates.”

With the assistance of the student leadership in one of the residences, the owner of the vehicle and his companion were traced this morning.

The two students were immediately handed to SAPS by the university’s Protection Services and were arrested on charges of attempted murder, assault and driving with false number plates.

In addition to the criminal investigation by the SAPS, the university is also conducting an urgent and formal investigation into the incident.

The university has offered Gwebu full counselling and support until he is fully recovered.

“It is sad and disappointing that, after so much progress with the social transformation of the UFS, such a horrific incident could have occurred. It is pleasing, however, that across the board, all our students condemned these vicious acts. The students, if found guilty in the criminal and institutional investigations, will definitely not be allowed to study at the University of the Free State,” he said.

END

Statement by Dr Willy Nel, Residence Head of Armentum men’s residence

The Residence Head, Residence Committee and all residents of Armentum male residence on the Bloemfontein Campus unequivocally distance themselves from any behaviour which does not breathe the letter and spirit of the University of the Free State's vision of Human Embrace and Academic Excellence. We work tirelessly to upend traditions that are contradicting this vision. Therefore we add our voice to those who condemn the incident in which ex-residents allegedly assaulted a pedestrian who is also a student of our institution. We express our support to and confidence in the university's and other processes to find justice in this matter.

Dr Willy Nel
Residence Head: Armentum



Media release
Lacea Loader (Director: Communication and Brand Management)
Tel: +27(0)51 401 3422
Cell: +27(0)83 645 2454
E-mail: news@ufs.ac.za

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept