Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

Code-switching, tokenism and consumerism in print advertising
2014-10-27

Code-switching, linguistic tokenism and modern consumerism in contemporary South African print advertising. This is the current research focus of two lecturers from the Faculty of the Humanities at the UFS, Prof Angelique van Niekerk and Dr Thinus Conradie.

The act of switching between two or more languages is replete with socio-cultural meaning, and can be deployed to advance numerous communicative strategies, including attempts at signalling cultural familiarity and group affiliation (Chung 2006).

For advertising purposes, Fairclough’s (1989) seminal work on the ideological functions of language remark on the usefulness of code-switching as a means of fostering an advertiser-audience relationship that is conducive to persuasion. In advertising, code-switching is a valuable means with which a brand may be invested with a range of positive associations. In English-dominated media, these associations derive from pre-existing connotations that target audiences already hold for a particular (non-English) language. Where exclusivity and taste, for example, are associated with a particular European language (such as French), advertising may use this languages to invest the advertised brand with a sense of exclusivity and taste.

In addition, empirical experiments with sample audiences (in the field of consumer research) suggest that switching from English to the first language of the target audience, is liable to yield positive results in terms of purchase intentions (Bishop and Peterson 2011). This effect is enhanced under the influence of modern consumerism, in which consumption is linked to the performance of identity and ‘[b]rands are more than just products; they are statements of affiliation and belonging’ (Ngwenya 2011, 2; cf. Nuttall 2004; Jones 2013).

In South African print magazines, where the hegemony of English remains largely uncontested, incorporating components of indigenous languages and Afrikaans may similarly be exploited for commercial ends. Our analysis suggests that the most prevalent form of code-switching from English to indigenous South African languages represents what we have coded as linguistic tokenism. That is, in comparison with the more expansive use of both Afrikaans and foreign languages (such as French), code-switching is used in a more limited manner, and mainly to presuppose community and solidarity with first-language speakers of indigenous languages. In cases of English-to-Afrikaans code-switching, our findings echo the trends observed for languages such as French and German. That is, the language is exploited for pre-existing associations. However, in contrast with French (often associated with prestige) and German (often associated with technical precision), Afrikaans is used to invoke cultural stereotypes, notably a self-satirical celebration of Afrikaner backwardness and/or lack of refinement that is often interpolated with hyper-masculinity.

References


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept