Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

Medical team performs first hybrid procedure in the Free State
2014-12-08

The days when a heart operation meant hours in an operating theatre, with weeks and even months of convalescing, will soon be something of the past.

A team of cardiologists from the University of the Free State’s (UFS) Faculty of Health Sciences once again made medical history when they performed the first hybrid procedure in the Free State.

The Department of Paediatric Cardiology, in conjunction with the Department of Cardiothoracic Surgery, performed this very successful procedure on a 45-year-old woman from Kuruman.

During the procedure of 30 minutes, the patient’s thorax was opened up through a mini thoracotomy to operate on the beating heart.

“The patient received an artificial valve in 2011. Due to infection, a giant aneurism developed from the left ventricle, next to the aorta. Surgery would pose a very high risk to the patient. Furthermore, her health was such that it would contribute to problems during open-heart surgery,” explains Prof Stephen Brown, Head of the UFS’s Department of Paediatric Cardiology.

“After the heart was opened up through a mini thoracotomy, the paediatric cardiologists performed a direct puncture with a needle to the left ventricle cavity. A Special sheath was then placed in the left ventricle to bypass the catheters. Aided by highly advanced three-dimensional echocardiography and dihedral X-ray guidance, the opening to the aneurism, located directly below the artificial aorta valve, was identified and the aneurism cannulated.”
 
During the operation, a special coil, called a Nester Retractor, was used for the first time on a patient in South Africa to obtain stasis of extravasation and ensure the stability of devices in the aneurism.

“This is highly advanced and specialist work, as we had to make sure that the aneurism doesn’t rupture during manipulation and the devices had to be positioned in such a way that it doesn’t cause obstruction in valve function or the coronary artery. The surgical team was ready all the time to switch the patient to the heart-lung machine should something go wrong, but the procedure was very successful and the patient was discharged after a few days.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept