Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

Shimlas: Unbeaten Varsity Cup Champions!
2015-04-14

  •  

    Photo: Johan Roux
    Spotlight Photo: Spektor Photography
    Photo gallery

The UFS Shimlas rugby team made history on Monday 13 April 2015 when they won their first ever Varsity Cup tournament, beating North-West University (NWU) Pukke 63-33 in the final.

Not only did Shimlas make history by winning their first-ever tournament title since the inaugural tournament in 2008, but they did not lose a single game in the 2015 Varsity Cup, thus claiming the cup in front of their home crowd at Shimla Park in Bloemfontein.

Shimlas outscored their traditional intervarsity rivals with nine tries to four. Pukke put the first points on the scoreboard with a penalty kick. The home side started off slowly in the first half. However, Shimlas’ lock, Johan van der Hoogt, did score the first try of the match followed by flyhalf and player that rocks, Niel Marais’s successful conversion kick. Yet, the men from the North-West retaliated full force for the greater part of the first half and, two tries later, had a 18-8 lead over the UFS team. 

Shortly after the first strategy break, Shimlas No.8, Niell Jordaan, crossed the try line following a driving maul, but the visitors received another penalty and succeeded with the kick at goal. The last ten minutes before half time saw Shimlas taking advantage, with the Pukke skipper being sent to the sin bin. Wing Maphutha Dolo hit a gap in NWU’s defense, and scored the try that put Shimlas in the lead again. Not long after, Marais sparked in making a play, offloading to flank Daniel Maartens to score a final try before half time, securing a 26-20 lead.

The second half had not been in play too long when the home side crossed the try line again, scoring their fifth try. Marais was again central in creating the play that saw Shimlas outside centre, Nico Lee, putting the points on the board.

NWU fought back again, scoring a pushover try from a scrum. But Shimlas would not give up the lead again, and a well-timed pass from Marais had Lee crossing the line for his second try.

More Shimlas tries piled up from Marais, Dolo, and Maartens, leaving the Potchefstroom side behind 63-25, giving them little opportunity to score again. One desperate consolation try by Pukke in the final seconds did manage to close the gap on the scoreboard, but it was not nearly enough to snatch the title from the hungry and undefeated Shimlas.

FNB Player that Rocks: Niel Marais
Shimlas point scorers:
Tries: Johan van der Hoogt, Niell Jordaan, Maphutha Dolo (2), Daniel Maartens (2), Nico Lee (2), Niel Marais
Conversions: Niel Marais (6)

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept