Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

Alcinda Honwana: Youth Protests Main Mechanism against Regime
2015-05-25

Prof Alcinda Honwana

"Enough is Enough!": Youth Protests and Political Change in Africa (speech) 

The Centre for Africa Studies at the UFS hosted an interdisciplinary project on the Bloemfontein Campus from 20-22 May 2015.

The project, entitled Contemporary Modes of Othering: Its Perpetuation and Resistance, looked at different perspectives, representations, and art forms of otherness, how it is perceived, and how it is resisted.

The annual Africa Day Memorial Lecture was held on Thursday evening 21 May 2015 at the CR Swart Auditorium. Guest speaker Prof Alcinda Honwana addressed the subject of ‘Youth Protests and Political Change in Africa’.

“Youth now seem able to display what they don’t want, rather than what they do want,” Honwana said in her opening remarks. “Thus, we see the young driven to the streets to protest against regimes.”
 
Honwana shed some light on recent examples of youth protests in Africa that have enjoyed global attention. Looking at the protests in Tunisia (2010), Egypt (2011), Senegal (2012), and Burkina Faso (2014), it is clear that these events in northern and western Africa have inspired others globally. Yet, Honwana stated that, despite these protests, no social economic change has been seen, and has left dissatisfaction with new governments as well.

“Once regimes fall… young activists find themselves more divided, it seems…

“Which leaves the question: Will street protests remain young people’s main mechanism to avert those in power?”

Background on Prof Alcinda Honwana:

Alcinda Honwana is currently Visiting Professor of Anthropology and International Development at the Open University (UK). She was chair in International Development at the Open University, and taught Anthropology at the University Eduardo Mondlane in Maputo, the University of Cape Town in South Africa, and the New School for Social Research in New York. She was programme director at the Social Science Research Council in New York, and worked for the United Nations Office for Children and Armed Conflict. Honwana has written extensively on the links between political conflict and culture, and on the impact of violent conflict on children and youth, conducting research in Mozambique, the Democratic Republic of the Congo, Angola, Colombia, and Sri Lanka. Her latest work has been on youth and social change in Africa, focusing on Mozambique, Senegal, South Africa, and Tunisia.

Honwana’s latest books include:

• Youth and Revolution in Tunisia (2013); 
• Time of Youth: Work, Social Change, and Politics in Africa (2012);
• Child Soldiers in Africa (2006);
• Makers and Breakers: Children and Youth in Postcolonial Africa (2005, co-edited).

Honwana was awarded the prestigious Prince Claus Chair for Development and Equity in the Netherlands in 2007.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept