Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

New Genetics building on Bloemfontein Campus spirals into new frontiers
2015-09-11

On Thursday 3 September 2015, the Department of Genetics hosted the official opening of its new offices on the Bloemfontein Campus of the University of the Free State (UFS).

Prof Jonathan Jansen, Vice-Chancellor and Rector of the UFS, Prof Neil Heideman, Dean of the Faculty of Natural and Agricultural Sciences, and Prof Paul Grobler, Head of the Department of Genetics cut the ribbon, symbolising the opening of this building with its state-of-the-art facilities.

The new genetics building boasts a new administration block with a reception area, seven offices, a small committee room, and a seminar room for 50 people. Furthermore, the undergraduate laboratory block provides a laboratory for 150 students. The research block has facilities for 30 researchers.

This building also hosts a chemical waste sorting and storage facility. This is a first for the university.

Several sites were investigated for the new building, but due to its size and envisaged second phase, a “green fields” site was found on the western side of the campus. The main entrance caters for visitors from the north, students on foot, and those using the parking area in front of the library. The secondary south entrance is for those who use the dedicated parking area south of the building. The link between these two entrances is the spine of the building, a helix with services/buildings spaced on either side. The helix will be extended in the second phase to keep the circulation and linkage of buildings as simple as possible.

In his opening speech, Prof Grobler gave a breakdown of the history of the Department of Genetics. Today, this department, which opened its doors at the UFS in 1960, is proud of its 131 students and 46 honours students.

According to Major-General Edward Ngokha, Head of the Forensic Science Laboratory, students who graduate from the UFS in the field of genetics make excellent employees. The Forensic Science Laboratory has employed 25 honours students since the BSc Honours degree in Genetics was implemented in 2010.

“The UFS delivers education of high quality and high standards. Thank you for your contribution toward fighting crime by delivering well-prepared, committed employees,” said Major-General Ngokha.

The department presents programmes on population conservation genetics, plant molecular genetics, cytogenetics, forensic genetics, forensic science, human genetics, and behavioural genetics.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept