Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

Suspension of the South African Doping Control Laboratory (SADoCoL) by the World Anti-Doping Agency (WADA)
2016-05-04

The senior leadership of the UFS and the management of the South African Doping Control Laboratory (SADoCoL) take note of the decision by the World Anti-Doping Agency (WADA) to suspend the laboratory’s accreditation to perform doping control analysis on biological samples of athletes and sportsmen and -women until 30 September 2016. During this time of suspension, all sport-related samples will be sent for analysis to the WADA accredited laboratory in Qatar until the accreditation of SADoCoL is re-established. Analysis according to WADA accreditation will therefore not be interrupted during the period of the suspension of the accreditation of SADoCoL.

The announcement by WADA on 3 May 2016 follows a voluntary decision by SADoCoL in March 2016 to temporarily close the laboratory for some of its routine analytical duties for six months, as from 1 April 2016. The decision was taken in consultation with the senior leadership of the UFS and other role players, especially the Department of Sport and Recreation of South Africa (SRSA) and the South African Institute for Drug-Free Sport (SAIDS). SADoCoL is a specialised service laboratory of the University of the Free State (UFS) and has been in existence for more than thirty years.

Due to the ever-increasing demands on the number, variety and analytical sensitivity of compounds to be analysed according to the Prohibited List of WADA, technical and infrastructure adaptations need to be implemented in the laboratory continuously to keep up with the demands. Over the last year, SADoCoL has drastically increased its capacity in both personnel and infrastructure, to a point where these changes can be implemented for optimal performance of the laboratory.  This has to be done while normal routine analysis continues, and it became clear that at present, implementation cannot be successfully accomplished together with the workload from normal routine analyses.

The time of suspension will be utilised to implement and test these new systems in order to achieve the standard presently required by WADA, as well as to perform development and improvements.  This development will be performed in close collaboration with other role players in the anti-doping movement in South Africa, such as SAIDS and SRSA. Scientific development aid will also be acquired from other doping control laboratories worldwide in order to assure that the high analytical quality is maintained and expanded to meet the fast growing challenges in this field. The progress of the process will be closely monitored, and the upgraded methodologies will then, after rigorous testing, be implemented to ensure that the required analytical quality is maintained so as to obtain re-accreditation by WADA at the conclusion of the suspension period.

Issued by: Lacea Loader (Director: Communication and Brand Management)
Telephone: +27(0)51 401 2584 or +27 (0) 83 645 2454
E-mail: news@ufs.ac.za
Fax: +27 (0) 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept