Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

Horse-riding therapy improves self-confidence in children
2016-05-10


This group of Honours students in Psychology at the University of the Free State was honoured with the best postgraduate Service Learning award at the prize-giving function of the Faculty of the Humanities. From the left are Adriana de Vries, Hershel Meyerowitz, Simoné le Roux, Wijbren Nell, Melissa Taljaard, and Gerán Lordan. Photo: Marizanne Cloete.

Horse-riding therapy helps to improve self-confidence in children, and changes their perception of themselves. It puts them in a totally new environment where they can be free of any judgement.

According to Wijbren Nell, who achieved his Honours degree in Psychology at the University of the Free State (UFS), this is the ideal therapy when working with children with disabilities. He said it was amazing to see how they developed.

He was part of a group of Honours students in Psychology who received the best postgraduate Service Learning award in the Faculty of the Humanities for their community project. In 2015, this project by Wijbren, Hershel Meyerowitz, Gerán Lordan, Melissa Taljaard, Simoné le Roux, and Adriana de Vries, was part of their module Community and Social Psychology. They were honoured at the Faculty’s prize-giving function on 15 April 2016.

Purpose of project

“Our purpose with the project was to demonstrate to the children that they could still accomplish something, despite their disabilities,” Wijbren said. The students work on a weekly basis with learners from the foundation phase of the Lettie Fouché School in Bloemfontein. Marie Olivier’s Equistria Therapeutic Development Trust serves as the site for the community project. She has a long standing partnership with the UFS.

Horse-riding and therapy

According to Wijbren, the idea was to stimulate the psychomotor functioning of the children, as well as to promote their psychological well-being. He said research has shown that there is incredible therapeutic value in horse-riding. In this specific case, it has improved the children’s self-confidence, as they may have a poor self-image as a result of their disabilities.

“At the beginning of the year, there was a girl who didn’t even want to come close to a horse, let alone getting onto the horse. We kept on trying, and, once she was on the horse, we couldn’t get her down. This was the amazing thing about the project,” said Wijbren.

Award a surprise

Wijbren said the award was a honour and surprise to his group. He was full of praise for Dr Pravani Naidoo, a lecturer in Psychology at the UFS, who coordinates the therapeutic horse riding project. “She has a tremendous passion for this project, and challenged us to think on our feet. She is a real inspiration.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept