Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

Plant researcher receives prestigious Grain SA award
2016-10-21

Description: Plant researcher receives prestigious Grain SA award Tags: Plant researcher receives prestigious Grain SA award

Prof Zakkie Pretorius from the UFS Department
of Plant Sciences with Andries Theron,
vice-chairman of Grain SA. Theron presented
the award to Prof Pretorius at Grain SA’s a
nnual gala event, which was held in Midrand
this year.
Photo (read more): Supplied
Photo (spotlight): Charl Devenish

A researcher in the Department of Plant Sciences at the University of the Free State (UFS), Prof Zakkie Pretorius, received the prestigious Grain Producer of the Year Inspiration Award during the annual gala event of Grain SA. Grain SA provides strategic commodity support and services to South African grain producers to assist in the sustainability of the sector.

This award is presented to individuals or organisations in appreciation of excellent contributions to the grain industry. These individuals have also achieved extraordinary results in their respective fields.

Research in the interest of food security
Prof Pretorius has been involved in research on plant diseases and food crops for the past 38 years. His research focus, rust diseases in crops, is especially important for food security.  

According to Prof Pretorius, who collaborates with an extensive network of specialist colleagues, his research covers a variety of topics including rust race identification, the discovery of new resistance genes, characterisation of resistance expression in plants, and the mapping of genes. His focus is not only on wheat, but he also researches rust diseases in oats, barley, maize, dry beans, lentils, sunflowers, and soybeans.

Breeding of rust-resistant varieties gains scientific basis
Locally, he has been contracted for several years by the Winter Grain Trust to annually evaluate commercial wheat cultivars and elite germplasm. This information is regularly passed on to the relevant seed companies and breeders, and is also included in the production guidelines of the Agricultural Research Council for disease risk assessment. His research places the breeding and selection of rust-resistant varieties on a solid scientific foundation. A living collection of rust fungus cultures and a large germplasm collection are maintained at the UFS under his supervision.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept