Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

UFS first tertiary institution in SA to form association with the Arbinger Institute
2008-02-15

 

 A two-day seminar entitled: "The Choice and The Choice @ Work" was recently presented in Bloemfontein to companies in the Free State region. Here are, from the left: Mr Braam Botha (Well @ Work), Mr Jozef Myburgh (Telkom), and Dr Cobus Pienaar (from the Department of Industrial Psychology at the UFS and facilitator of the Arbinger Programme).
Photo: Lacea Loader

 

UFS first tertiary institution in SA to form association with the Arbinger Institute

The University of the Free State (UFS) has become the first tertiary institution in the country to form an association with the Arbinger Institute in the United States of America (USA).

“The Arbinger Institute is a global management training and consulting firm applying the implications of self-deception and its solutions to all aspects of organisational performance. Our association with this Institute is a major step for the development of leadership in the country,” says Mr Danie Jacobs, Head of the Centre for Business Dynamics at the UFS.

Dr Cobus Pienaar, from the Department of Industrial Psychology at the UFS, is currently the only licensed facilitator to present Arbinger’s work in South Africa. Dr Pienaar presents The Choice and The Choice @ Work programme on behalf of the Centre for Business Dynamics, under the banner of the UFS School of Business.

According to Mr Jacobs, the programme has already had successes in South Africa. “Dr Pienaar presented the first programme last year in Bloemfontein and Pretoria to leaders from various companies. The feedback on the application of the programme to the South African business environment was phenomenal,” says Mr Jacobs.

The Arbinger Institute’s change work grows out of the scholarly work of philosopher Terry Warner. With an international team of scholars, Warner has broken new ground in solving the age-old problem of self-deception, or what was originally called “resistance”.

“This phenomenon is at the heart of much organisational failure. It is the reason why many organisational problems seem so intractable at their core – they are in self-deception; they resist solution,” says Mr Jacobs.

Media release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
15 February 2008

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept