Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 May 2021 | Story Ilze Bakkes

The COVID-19 outbreak in South Africa and the subsequent national lockdown severely impacted the usual physical open day mass-marketing tactic. At the same time, it provided an opportunity for the Department of Student Recruitment Services (SRS) to be super creative and agile in promoting the UFS offerings to the target audiences. 

Once a year, the UFS invites prospective learners and parents to visit our campuses for a taste of campus life. But for many interested students, especially those living remotely or abroad, a site visit is not always practical. Furthermore, the 2021 open days on the Bloemfontein and Qwaqwa Campuses were again cancelled due to the COVID-19 pandemic. The 2020 Virtual Open Day proved that breaking from the traditional recruitment tactics and moving into the virtual domain was not only bold and innovative, but also offered more engagement and communication opportunities with prospective students. Building on the insights and success of COVID-19 response engagements, the Department of Student Recruitment Services has once again developed an immersive virtual experience for prospective students. 

Ilze Bakkes, Chief Officer: Integrated Marketing and Innovation from the Department of Student Recruitment Services, says: “We listened to the needs and wants of our prospective students and staff. Therefore, the 2021 Virtual Expo will have undergraduate, postgraduate, and international student recruitment foci, offering more and relevant information in a visual, multi-layered, and digital way.” Information is presented through videos, photos, downloadable PDF brochures, and links to marketing material and the online application platform. 

A challenge during the physical open day is the lack of time to engage with faculties or that not all the information could be obtained. The Virtual Expo is live now click here and can be visited until 30 September 2021, when applications to study undergraduate and postgraduate programmes in 2022 close. The Virtual Expo offers a professional, easy-to-navigate and hassle-free digital experience of the academic, social, and cultural life at the UFS on all three campuses – in the convenience of the visitor’s own space and time. Subtexts for videos enable differently abled visitors to enjoy the content, and data-sensitive visitors can download the PDF versions of videos. 

Applications to study in 2022 are already open. To apply, click here (link to online application). For important closing dates, download the UFS Undergraduate Prospectus

For information on the Virtual Expo, contact Ilze Bakkes at +27 51 401 9028 or bakkese@ufs.ac.za.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept