Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 May 2021 | Story Leonie Bolleurs | Photo Supplied
Dr Hlami Ngwenya believes that the UFS has a key role to play in Africa.

Dr Hlami Ngwenya, Lecturer in the Department of Sustainable Food Systems and Development at the University of the Free State (UFS), describes herself as a social scientist and global citizen – having worked in more than 50 countries, with more than 30 years of experience. 

She is equipping students to make a difference in their communities, whether it is here in South Africa, or in other countries in Africa where they reside and beyond. Dr Ngwenya joined the UFS in 2015, teaching the Advanced Diploma on Extension for Sustainability and the Master’s Programme on Sustainable Agriculture and Extension: Theory and Practice. 

Investing in farmers’ human capital globally

She has made major contributions to the field with her research work. In 2020, she contributed a chapter on ‘Food and Agriculture’ in the United Nations Development Programme (UNDP) report on COVID-19 Rapid Emergency Needs Assessment for the most vulnerable groups. In addition, she was part of a global study titled, Investing in farmers: Agriculture Human Capital Investment (AHCI) strategies, conducted in partnership with the International Food Policy Research Institute (IFPRI) and the Food and Agriculture Organisation (FAO Investment Centre).  

The latter study was conducted in nine countries in Africa, Asia, and Latin America. The aim was to improve the understanding of AHCI. The study also provides lessons learned from successful AHCI models around the world, with recommendations and guidelines for future investment that enhances the human capital of agricultural producers.

This year, she is working on a research paper titled, Demystifying facilitation of systemic change and the role of agriculture extension towards sustainable development and resilient food systems: analytical, conceptual and theoretical underpinnings.

Her input is also valued by paramount bodies in the industry, such as the Global Forum for Rural Advisory Services (GFRAS). Dr Ngwenya is a member of the GFRAS Consortium for Education and Training, and she is playing a significant role in terms of agricultural extension and advisory services at a global level. 

Global tool with local relevance 

She is also one of the faces behind the globally developed New Extensionist Learning Kit. Commonly known as NELK, this GFRAS product was created as a tool to augment and equip agricultural extension personnel with the functional skills relevant to managing the complexities of agricultural innovation and food systems. 

The UFS Department of Sustainable Food Systems and Development is one of the leading institutions globally that has adopted and adapted NELK as part of its curriculum. The South African Society for Agricultural Extension (SASAE) has also adopted the kit to contribute towards the continuous professional development of extension personnel. 

On the African continent, Dr Ngwenya has been a resource person for the African Forum for Agricultural Advisory Services (AFAAS) and supported the development of agricultural extension and advisory services fora at regional and national levels. 

Here on home soil, she continues to be involved with SASAE, supporting them in facilitating their strategic planning processes and professionalisation activities.

Spreading her wings beyond extension 

Beyond her active involvement in the agricultural extension field, Dr Ngwenya is a role player in other areas of agriculture globally. This includes agricultural policy, agricultural research, as well as agricultural education.  She brings all this knowledge and skills to benefit her students and the university. 

In her lifetime, she has had the opportunity to moderate more than 300 multi-stakeholder engagements, including strategic planning sessions, organisational development, team building, training, and conferences. These include high-level policy dialogues at United Nations level, the African Union Commission, and other continental and regional level organisations. 

Humbleness is empowering 

Although she had the chance to travel the world and engage at the highest level, she believes that it is important to be humble. She makes an effort to respect and cherish people for who they are, their cultures, and different systems. 

“One of the most valuable lessons I have learnt through engaging in many African countries, is that there is not necessarily co-relation between a country’s strong economy and human capital.” Despite the socio-political challenges that many countries go through (including ours), there are many genuine, hard-working, and intelligent people out there,” she says. 

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept