Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 November 2021 | Story Leonie Bolleurs | Photo Supplied
With her talk on ‘Breaking the walls of darkness’, Emmie Chiyindiko came in second out of the 74 pitches presented at the recent Falling Walls Science Summit.

“I need you to take a moment and imagine trying to do everything that you do every day … without reliable energy. Or I’ll ask you this … How far would you walk to charge your phone if you didn’t have electricity? Would you walk for hours? Kilometres?”

“Well, that’s what millions of people in sub-Saharan Africa do daily to charge their phones. One billion people globally don’t have access to electricity in their homes and in sub-Saharan Africa, more than half of the population remains in the dark.”

This was the introduction to Emmie Chiyindiko’s talk at the recent Falling Walls Science Summit earlier this month. Emmie, who is a PhD student in Chemistry at the University of the Free State (UFS), came in second out of the 74 pitches presented with her talk on ‘Breaking the walls of darkness’ in the ‘Breakthrough of the year in the emerging talents category’.

Falling Walls Lab is a world-class pitching competition, networking forum, and steppingstone that brings together a diverse and interdisciplinary pool of students, researchers, and early-career professionals by providing a stage for breakthrough ideas, both globally and locally. 

Emmie, who sees getting out of bed every morning as just another opportunity to “be the exceptional young black female scientist that I am”, won the local Falling Walls Lab in Cape Town in October, which resulted in her going through to the finals in Berlin. She plans to host the Falling Walls Lab in Zimbabwe, her homeland, next year. 

This innovator and science communicator, whose work has been covered in Forbes Science, News24, and the Sunday Times, among others, refers to her obtaining second place on the international stage for her research as “a tremendous achievement and a new height in my science communication career. That level of recognition from the world leaders in science, technology, and science engagement cannot be overstated”.

Ending energy poverty

She believes Sustainable Development Goal 7 – leaving no one behind and eradicating global poverty – must be preceded by intentional efforts to end energy poverty. “My research on dye-sensitised solar cells (DSSC) with special metal complexes is among the most interesting alternatives to conventional solar cells.”

Emmie explains: “The design of the cells is inspired by photosynthesis – that good old process plants use to transform sunlight into energy via chlorophyll. Instead of a leaf, the cells start with a porous, transparent film of eco-friendly titanium dioxide nanoparticles. The film is also coated with a range of different dyes that absorb scattered sunlight and fluorescent light. When sunlight hits, it excites the electrons in the dye, creating an endless supply of energy. 

The bright side of this research is that there are several benefits to this invention. It produces energy that is cheap, reliable, and relatively simple and inexpensive to produce. Emmie adds: “These next-generation cells also work impeccably in low-light and non-direct sunlight conditions, providing all-year-round energy with no disruptions. DSSC is also three times cheaper than conventional cells and produces 40% more energy.”

Improving livelihoods 

She continues: “It does not degrade in sunlight over time as do other thin-film cells, making the cells last longer, and requiring less frequent replacement. DSSCs are also mechanically strong, because they are made of lightweight materials and do not require special protection from rain or abrasive objects.”

Emmie has proven that solutions to our current energy situation are available. “We are on the cusp of an energy revolution, and we must act now. Solutions are available, and if we do not seize them during a time of crisis, when will we?”

She believes that creating technology like this can end the energy crisis and improve livelihoods. “Billions of people simply lack enough energy to build a better life. Affordable, abundant, and reliable energy can go a long way to store food, power life-saving medical equipment, and run trains and factories. It can help communities to grow and prosper and to access opportunity and dignity. Societies where people have access to energy have lower childhood mortality, a higher life expectancy, they eat better and drink cleaner water, and have a better literacy rate.”

News Archive

Final lecture in Darwin series presented at the UFS
2010-02-23

At the lecture were, from the left: Prof. Terence McCarthy, Prof. Jo van As, Chairperson of the Darwin 200 Committee and Head of the Department of Zoology and Entomology at the UFS, Prof. Bruce Rubidge, Elsabe Brits, journalist at Die Burger and Esther van der Westhuizen, presenter on Groen.
Photo: Leonie Bolleurs


The University of the Free State (UFS), in collaboration with the Central University of Technology, Free State (CUT) and The National Museum in Bloemfontein recently hosted the final lecture on the Charles Darwin lecture series entitled “The story of life and survival”.

The lecture was presented by Prof. Bruce Rubidge, the Director of the Bernard Price Institute for Paleontological Research at Wits University and Prof. Terence McCarthy, a Professor of Mineral Geochemistry at Wits and Head of the Department of Geology. Proff. Rubidge and McCarthy are co-authors of the book The Story of Life on Earth.

Their lecture with the topic “Trends in evolution and their bearing on the future of humankind” dealt with the future of evolution. According to Prof. Rubidge, ninety-nine percent of the species that have ever lived are extinct. “We are living in a time of mass extinction. Fifty thousand species become extinct annually,” he said.

Prof. McCarthy discussed many factors that can result in mankind’s extinction today. The impact of climate change, big volcanic eruptions, a comet or asteroid hitting earth, tsunamis and the collapsing of sea islands are some of the factors Prof. McCarthy believes could cause great catastrophe’s on earth.

“We live on the brink of this all the time,” he said.

Prof. McCarthy also believes that we can avoid these catastrophes. By allowing only one child per family we can shrink the global population with 30% per generation. This is doable in a short time span,” he said.

Other ideas he had on saving mankind from getting extinct is to create extensive ecological reserves on land but especially in the ocean, to decentralise everything, to change to renewable energy, to recycle resources and to be vigilant in doing this.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept