Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 November 2021 | Story Leonie Bolleurs | Photo Supplied
With her talk on ‘Breaking the walls of darkness’, Emmie Chiyindiko came in second out of the 74 pitches presented at the recent Falling Walls Science Summit.

“I need you to take a moment and imagine trying to do everything that you do every day … without reliable energy. Or I’ll ask you this … How far would you walk to charge your phone if you didn’t have electricity? Would you walk for hours? Kilometres?”

“Well, that’s what millions of people in sub-Saharan Africa do daily to charge their phones. One billion people globally don’t have access to electricity in their homes and in sub-Saharan Africa, more than half of the population remains in the dark.”

This was the introduction to Emmie Chiyindiko’s talk at the recent Falling Walls Science Summit earlier this month. Emmie, who is a PhD student in Chemistry at the University of the Free State (UFS), came in second out of the 74 pitches presented with her talk on ‘Breaking the walls of darkness’ in the ‘Breakthrough of the year in the emerging talents category’.

Falling Walls Lab is a world-class pitching competition, networking forum, and steppingstone that brings together a diverse and interdisciplinary pool of students, researchers, and early-career professionals by providing a stage for breakthrough ideas, both globally and locally. 

Emmie, who sees getting out of bed every morning as just another opportunity to “be the exceptional young black female scientist that I am”, won the local Falling Walls Lab in Cape Town in October, which resulted in her going through to the finals in Berlin. She plans to host the Falling Walls Lab in Zimbabwe, her homeland, next year. 

This innovator and science communicator, whose work has been covered in Forbes Science, News24, and the Sunday Times, among others, refers to her obtaining second place on the international stage for her research as “a tremendous achievement and a new height in my science communication career. That level of recognition from the world leaders in science, technology, and science engagement cannot be overstated”.

Ending energy poverty

She believes Sustainable Development Goal 7 – leaving no one behind and eradicating global poverty – must be preceded by intentional efforts to end energy poverty. “My research on dye-sensitised solar cells (DSSC) with special metal complexes is among the most interesting alternatives to conventional solar cells.”

Emmie explains: “The design of the cells is inspired by photosynthesis – that good old process plants use to transform sunlight into energy via chlorophyll. Instead of a leaf, the cells start with a porous, transparent film of eco-friendly titanium dioxide nanoparticles. The film is also coated with a range of different dyes that absorb scattered sunlight and fluorescent light. When sunlight hits, it excites the electrons in the dye, creating an endless supply of energy. 

The bright side of this research is that there are several benefits to this invention. It produces energy that is cheap, reliable, and relatively simple and inexpensive to produce. Emmie adds: “These next-generation cells also work impeccably in low-light and non-direct sunlight conditions, providing all-year-round energy with no disruptions. DSSC is also three times cheaper than conventional cells and produces 40% more energy.”

Improving livelihoods 

She continues: “It does not degrade in sunlight over time as do other thin-film cells, making the cells last longer, and requiring less frequent replacement. DSSCs are also mechanically strong, because they are made of lightweight materials and do not require special protection from rain or abrasive objects.”

Emmie has proven that solutions to our current energy situation are available. “We are on the cusp of an energy revolution, and we must act now. Solutions are available, and if we do not seize them during a time of crisis, when will we?”

She believes that creating technology like this can end the energy crisis and improve livelihoods. “Billions of people simply lack enough energy to build a better life. Affordable, abundant, and reliable energy can go a long way to store food, power life-saving medical equipment, and run trains and factories. It can help communities to grow and prosper and to access opportunity and dignity. Societies where people have access to energy have lower childhood mortality, a higher life expectancy, they eat better and drink cleaner water, and have a better literacy rate.”

News Archive

Researcher shares platform with Nobel Laureate at conference on nanomedicine
2013-01-10

Prof. Lodewyk Kock at the Everest viewpoint with Mount Everest behind him.
10 January 2013

Profs. Lodewyk Kock and Robert Bragg from the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS) both presented lectures at the first International Conference on Infectious Diseases and Nanomedicine that was held in Kathmandu, Nepal, late last year.

At the conference, also attended by senior representatives from the International Union of Microbiological Societies (IUMS), Prof. Kock delivered one of the two opening lectures, titled: Introducing New Nanotechnologies to Infectious Diseases (the other opening lecture was presented by Nobel Laureate, Prof. Barry J. Marshal). Prof. Kock also participated in the farewell address.

In two excellent lectures, Prof. Bragg spoke on Bacteriophages as potential treatment option of antibiotic-resistant bacteria, and on Bacterial resistance to quaternary ammonium compounds.

For Prof. Kock this very first conference on infectious diseases and nanomedicine was followed by a very exciting yeast research excursion through the Mount Everest Highway which winds through the villages of the Sherpa tribe.

He describes his journey: “The Mount Everest Highway is a rough road stretching through hills and glacial moraines of unfamiliar altitudes and cold temperatures. Throughout the journey I had to take care of not contracting altitude sickness which causes severe headaches and dizziness.

“The only way of transport is on foot, on long-haired cattle called Yaks, donkeys and by helicopter. After flying by plane from Kathmandu (the capital of Nepal), I landed at Lukla, regarded as the most dangerous airport in the world due to its short elevated runway and mountainous surroundings. From Lukla, the land of the Sherpa, I walked (trekked) with my Sherpa guide and porter (carrier) along the Everest Highway surrounded by various Buddhist Mani scripture stands, other Buddhist representations and many spectacular snow-tipped mountains of more than 6 000 m above sea level. Of these, the majestic mountain called Ama Dablam (6 812 m), the grand 8 516 m high peak of Lhotse and to its left the renowned Mount Everest at 8 848 m in height, caught my attention.

“Dwarfed by these mountain peaks on the horizon, I passed various villages until I eventually reached the beautiful village called Namche Bazar, the heart of the Khumbu region and hometown of the Sherpa. This took three days of up to six hours walking per day, while I spent the nights at the villages of Phakding and Monjo. From there I walked along the Dudh Kosi River which stretches towards Mount Everest, until I reached the high altitude Everest viewpoint – the end of my journey, after which I trekked back to Lukla to return to Kathmandu and South Africa.

“This expedition is the first exploration to determine the presence of yeasts in the Everest region. Results from this excursion will be used in collaborative projects with local universities in Nepal that are interested in yeast research.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept