Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 November 2021 | Story Leonie Bolleurs | Photo Supplied
With her talk on ‘Breaking the walls of darkness’, Emmie Chiyindiko came in second out of the 74 pitches presented at the recent Falling Walls Science Summit.

“I need you to take a moment and imagine trying to do everything that you do every day … without reliable energy. Or I’ll ask you this … How far would you walk to charge your phone if you didn’t have electricity? Would you walk for hours? Kilometres?”

“Well, that’s what millions of people in sub-Saharan Africa do daily to charge their phones. One billion people globally don’t have access to electricity in their homes and in sub-Saharan Africa, more than half of the population remains in the dark.”

This was the introduction to Emmie Chiyindiko’s talk at the recent Falling Walls Science Summit earlier this month. Emmie, who is a PhD student in Chemistry at the University of the Free State (UFS), came in second out of the 74 pitches presented with her talk on ‘Breaking the walls of darkness’ in the ‘Breakthrough of the year in the emerging talents category’.

Falling Walls Lab is a world-class pitching competition, networking forum, and steppingstone that brings together a diverse and interdisciplinary pool of students, researchers, and early-career professionals by providing a stage for breakthrough ideas, both globally and locally. 

Emmie, who sees getting out of bed every morning as just another opportunity to “be the exceptional young black female scientist that I am”, won the local Falling Walls Lab in Cape Town in October, which resulted in her going through to the finals in Berlin. She plans to host the Falling Walls Lab in Zimbabwe, her homeland, next year. 

This innovator and science communicator, whose work has been covered in Forbes Science, News24, and the Sunday Times, among others, refers to her obtaining second place on the international stage for her research as “a tremendous achievement and a new height in my science communication career. That level of recognition from the world leaders in science, technology, and science engagement cannot be overstated”.

Ending energy poverty

She believes Sustainable Development Goal 7 – leaving no one behind and eradicating global poverty – must be preceded by intentional efforts to end energy poverty. “My research on dye-sensitised solar cells (DSSC) with special metal complexes is among the most interesting alternatives to conventional solar cells.”

Emmie explains: “The design of the cells is inspired by photosynthesis – that good old process plants use to transform sunlight into energy via chlorophyll. Instead of a leaf, the cells start with a porous, transparent film of eco-friendly titanium dioxide nanoparticles. The film is also coated with a range of different dyes that absorb scattered sunlight and fluorescent light. When sunlight hits, it excites the electrons in the dye, creating an endless supply of energy. 

The bright side of this research is that there are several benefits to this invention. It produces energy that is cheap, reliable, and relatively simple and inexpensive to produce. Emmie adds: “These next-generation cells also work impeccably in low-light and non-direct sunlight conditions, providing all-year-round energy with no disruptions. DSSC is also three times cheaper than conventional cells and produces 40% more energy.”

Improving livelihoods 

She continues: “It does not degrade in sunlight over time as do other thin-film cells, making the cells last longer, and requiring less frequent replacement. DSSCs are also mechanically strong, because they are made of lightweight materials and do not require special protection from rain or abrasive objects.”

Emmie has proven that solutions to our current energy situation are available. “We are on the cusp of an energy revolution, and we must act now. Solutions are available, and if we do not seize them during a time of crisis, when will we?”

She believes that creating technology like this can end the energy crisis and improve livelihoods. “Billions of people simply lack enough energy to build a better life. Affordable, abundant, and reliable energy can go a long way to store food, power life-saving medical equipment, and run trains and factories. It can help communities to grow and prosper and to access opportunity and dignity. Societies where people have access to energy have lower childhood mortality, a higher life expectancy, they eat better and drink cleaner water, and have a better literacy rate.”

News Archive

Shack study holds research and social upliftment opportunities
2015-02-10

Photo: Stephen Collett

When Prof Basie Verster, retired head of the Department of Quantity Surveying at the University of the Free State (UFS), initiated an alternative form of housing for Johannes - one of his employees - a decision was made to base research on this initiative. This research project in Grasslands, Heidedal focused on the cost and energy efficiency of green and/or sustainable shacks.

Esti Jacobs from the Department of Quantity Surveying, together with an honours student in Quantity Surveying, a master’s student in Architecture, and young professionals at Verster Berry, helped with the project.

The physical goals of the project were to create a structure that is environmentally friendly, and maintains a comfortable interior climate in winter and summer, as well as being cost-effective to erect. The structure also had to be socially acceptable to the family and the community.

“The intention was to make a positive contribution to the community and to initiate social upliftment through this project. Structures such as the ‘green shack’ may serve as an intermediate step to future housing possibilities, since these structures are relatively primitive, but have economic value and could be marketable,” she said.

Esti explains the structure of the building, which consists of gum poles and South African pine bearers, with a timber roof and internal cement block flooring. The building is clad with corrugated iron and has a corrugated iron roof finish. Additional green elements added to the structure were internal Nutec cladding, glasswool insulation in walls, internal gypsum ceiling boards with ‘Think Pink’ insulation, internal dividing wall and door, polystyrene in the floors, and tint on the windows. A small solar panel for limited electricity use (one or two lights and electricity to charge a cellphone) and a Jojo water tank for household consumption by the inhabitants were also installed.

Esti said: “Phase one of the research has been completed. This phase consisted of an investigation into the cost of an alternative form of housing structure (comparing traditional shacks with the planned structure) as well as the construction process of the physical housing structure.

“Phase two of the research, commencing in February 2015, will last for two to three years. This phase will include the installation of temperature and relative humidity logging devices inside the existing traditional shack and the new green shack. The logs will be regularly monitored by the UFS Department of Quantity Surveying and Construction Management.

These data will enable the researchers to measure the differences in comfort levels inside the two different structures. The data, together with other information such as building materials and methods, are then processed by software programs. Through the simulation of different environments, building materials, and alternate forms of energy, software models can be used to come up with conclusions regarding more energy-friendly building materials and methods. This knowledge can be used to improve comfort levels within smaller, low-cost housing units.

The UFS will be working with Prof Jeff Ramsdell of the Appalachian State University in the USA and his team on the second phase of the project.

“This research project is ongoing and will be completed only in a few years’ time,” said Esti.

The results of the research will be published in accredited journals or at international conferences.

 

For more information or enquiries contact news@ufs.ac.za.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept