Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 November 2021 | Story Leonie Bolleurs | Photo Supplied
With her talk on ‘Breaking the walls of darkness’, Emmie Chiyindiko came in second out of the 74 pitches presented at the recent Falling Walls Science Summit.

“I need you to take a moment and imagine trying to do everything that you do every day … without reliable energy. Or I’ll ask you this … How far would you walk to charge your phone if you didn’t have electricity? Would you walk for hours? Kilometres?”

“Well, that’s what millions of people in sub-Saharan Africa do daily to charge their phones. One billion people globally don’t have access to electricity in their homes and in sub-Saharan Africa, more than half of the population remains in the dark.”

This was the introduction to Emmie Chiyindiko’s talk at the recent Falling Walls Science Summit earlier this month. Emmie, who is a PhD student in Chemistry at the University of the Free State (UFS), came in second out of the 74 pitches presented with her talk on ‘Breaking the walls of darkness’ in the ‘Breakthrough of the year in the emerging talents category’.

Falling Walls Lab is a world-class pitching competition, networking forum, and steppingstone that brings together a diverse and interdisciplinary pool of students, researchers, and early-career professionals by providing a stage for breakthrough ideas, both globally and locally. 

Emmie, who sees getting out of bed every morning as just another opportunity to “be the exceptional young black female scientist that I am”, won the local Falling Walls Lab in Cape Town in October, which resulted in her going through to the finals in Berlin. She plans to host the Falling Walls Lab in Zimbabwe, her homeland, next year. 

This innovator and science communicator, whose work has been covered in Forbes Science, News24, and the Sunday Times, among others, refers to her obtaining second place on the international stage for her research as “a tremendous achievement and a new height in my science communication career. That level of recognition from the world leaders in science, technology, and science engagement cannot be overstated”.

Ending energy poverty

She believes Sustainable Development Goal 7 – leaving no one behind and eradicating global poverty – must be preceded by intentional efforts to end energy poverty. “My research on dye-sensitised solar cells (DSSC) with special metal complexes is among the most interesting alternatives to conventional solar cells.”

Emmie explains: “The design of the cells is inspired by photosynthesis – that good old process plants use to transform sunlight into energy via chlorophyll. Instead of a leaf, the cells start with a porous, transparent film of eco-friendly titanium dioxide nanoparticles. The film is also coated with a range of different dyes that absorb scattered sunlight and fluorescent light. When sunlight hits, it excites the electrons in the dye, creating an endless supply of energy. 

The bright side of this research is that there are several benefits to this invention. It produces energy that is cheap, reliable, and relatively simple and inexpensive to produce. Emmie adds: “These next-generation cells also work impeccably in low-light and non-direct sunlight conditions, providing all-year-round energy with no disruptions. DSSC is also three times cheaper than conventional cells and produces 40% more energy.”

Improving livelihoods 

She continues: “It does not degrade in sunlight over time as do other thin-film cells, making the cells last longer, and requiring less frequent replacement. DSSCs are also mechanically strong, because they are made of lightweight materials and do not require special protection from rain or abrasive objects.”

Emmie has proven that solutions to our current energy situation are available. “We are on the cusp of an energy revolution, and we must act now. Solutions are available, and if we do not seize them during a time of crisis, when will we?”

She believes that creating technology like this can end the energy crisis and improve livelihoods. “Billions of people simply lack enough energy to build a better life. Affordable, abundant, and reliable energy can go a long way to store food, power life-saving medical equipment, and run trains and factories. It can help communities to grow and prosper and to access opportunity and dignity. Societies where people have access to energy have lower childhood mortality, a higher life expectancy, they eat better and drink cleaner water, and have a better literacy rate.”

News Archive

UFS Department of Computer Science and Informatics motivates programming success among learners
2015-04-23

From Sentraal High School are from the left: Albert Dreyer (full marks, Grade 9); Corlé van der Walt (full marks, Grade 10); Janco Venter (full marks, Grade 10); Soné du Pisanie (full marks, Grade 10) en Handré Venter (Grade 9).

A group of learners from the Free State, who are taught at and by the University of the Free State’s Department of Computer Science and Informatics (under the Python project), came first in the Talent Search round of the South African Computer Olympiad (SACO).

According to Dr Anelize van Biljon, senior lecturer in the Department of Computer Science and Informatics, the Olympiad is presented in three main rounds: the Talent Search, the Application Olympiad, and the Programming Olympiad.

At the UFS’s Department of Computer Science and Informatics’ Python project, pupils from various schools in Bloemfontein attend programming classes where they are taught by staff and students of the department. These students are benefitted by the opportunity to transfer their knowledge to others. All the classes are free of charge.

Anelize explains: “The name was chosen because we use the Python programming language. It is a language with considerable appeal – not one of the fastest – which can be learnt relatively quickly, and which conforms to SACO requirements. The purpose of this programming is to implement algorithms (the learner is given a problem, makes a plan to solve it, and does the necessary programming). Thus, it is not about the looks of the programme, but about its effectiveness and speed.”
Anelize is the initialiser and co-ordinator of the Python project. "I started this project in 2010 in the Department of Computer Science and Informatics for learners from Grades 6 to 12 to encourage them to take the subject. These classes exposed them to something more than school work. I enjoy this kind of competitions and am also very involved with Maths Olympiads.

Achievements such as these are good advertisements for the Department of Computer Science and Informatics,” she said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept