Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 November 2021 | Story Leonie Bolleurs | Photo Supplied
With her talk on ‘Breaking the walls of darkness’, Emmie Chiyindiko came in second out of the 74 pitches presented at the recent Falling Walls Science Summit.

“I need you to take a moment and imagine trying to do everything that you do every day … without reliable energy. Or I’ll ask you this … How far would you walk to charge your phone if you didn’t have electricity? Would you walk for hours? Kilometres?”

“Well, that’s what millions of people in sub-Saharan Africa do daily to charge their phones. One billion people globally don’t have access to electricity in their homes and in sub-Saharan Africa, more than half of the population remains in the dark.”

This was the introduction to Emmie Chiyindiko’s talk at the recent Falling Walls Science Summit earlier this month. Emmie, who is a PhD student in Chemistry at the University of the Free State (UFS), came in second out of the 74 pitches presented with her talk on ‘Breaking the walls of darkness’ in the ‘Breakthrough of the year in the emerging talents category’.

Falling Walls Lab is a world-class pitching competition, networking forum, and steppingstone that brings together a diverse and interdisciplinary pool of students, researchers, and early-career professionals by providing a stage for breakthrough ideas, both globally and locally. 

Emmie, who sees getting out of bed every morning as just another opportunity to “be the exceptional young black female scientist that I am”, won the local Falling Walls Lab in Cape Town in October, which resulted in her going through to the finals in Berlin. She plans to host the Falling Walls Lab in Zimbabwe, her homeland, next year. 

This innovator and science communicator, whose work has been covered in Forbes Science, News24, and the Sunday Times, among others, refers to her obtaining second place on the international stage for her research as “a tremendous achievement and a new height in my science communication career. That level of recognition from the world leaders in science, technology, and science engagement cannot be overstated”.

Ending energy poverty

She believes Sustainable Development Goal 7 – leaving no one behind and eradicating global poverty – must be preceded by intentional efforts to end energy poverty. “My research on dye-sensitised solar cells (DSSC) with special metal complexes is among the most interesting alternatives to conventional solar cells.”

Emmie explains: “The design of the cells is inspired by photosynthesis – that good old process plants use to transform sunlight into energy via chlorophyll. Instead of a leaf, the cells start with a porous, transparent film of eco-friendly titanium dioxide nanoparticles. The film is also coated with a range of different dyes that absorb scattered sunlight and fluorescent light. When sunlight hits, it excites the electrons in the dye, creating an endless supply of energy. 

The bright side of this research is that there are several benefits to this invention. It produces energy that is cheap, reliable, and relatively simple and inexpensive to produce. Emmie adds: “These next-generation cells also work impeccably in low-light and non-direct sunlight conditions, providing all-year-round energy with no disruptions. DSSC is also three times cheaper than conventional cells and produces 40% more energy.”

Improving livelihoods 

She continues: “It does not degrade in sunlight over time as do other thin-film cells, making the cells last longer, and requiring less frequent replacement. DSSCs are also mechanically strong, because they are made of lightweight materials and do not require special protection from rain or abrasive objects.”

Emmie has proven that solutions to our current energy situation are available. “We are on the cusp of an energy revolution, and we must act now. Solutions are available, and if we do not seize them during a time of crisis, when will we?”

She believes that creating technology like this can end the energy crisis and improve livelihoods. “Billions of people simply lack enough energy to build a better life. Affordable, abundant, and reliable energy can go a long way to store food, power life-saving medical equipment, and run trains and factories. It can help communities to grow and prosper and to access opportunity and dignity. Societies where people have access to energy have lower childhood mortality, a higher life expectancy, they eat better and drink cleaner water, and have a better literacy rate.”

News Archive

Chemistry Department expands its international footprint
2015-10-14

Prof André Roodt

Prof André Roodt from the Department of Chemistry at the University of the Free State has returned from a research visit at the St Petersburg State University in Russia. The research he conducted at the St Petersburg State University is part of a bilateral collaboration agreement between the University of the Free State and St Petersburg State University.

As part of his visit to Russia (from 17 to 28 September 2015), Prof Roodt presented a seminar at St Petersburg State University, and a lecture at the conference titled: International conference on Organometallic and Coordination Chemistry: Achievements and Challenges.

One of the local Russian newspapers quoted Prof Roodt as “world-renowned expert in the study of chemical kinetics and mechanisms of chemical reactions”. His presentation: Are detailed reaction mechanisms really necessary in (applied) organometallic and coordination chemistry' attracted great interest from the St Petersburg chemists.

The bilateral agreement came to life a year ago when the St Petersburg State University chemists won a grant in a competition to create an international research group, the International Laboratory of Organometallic Chemistry. The Laboratory is headed by Prof Vadim Kukushkin of the St Petersburg State University.

In addition to the employees of St Petersburg University, the research group consists of researchers from Portugal, Finland, South Africa, and Azerbaijan. Together, these groups of scientists are working on the problem of non-reactive metal activation molecules. The main theme of the research laboratory is in the catalysis and activation of metal inert molecules which then undergo significant change, and become meaningful to people chemicals, such as drugs.

As part of this initiative, a bilateral collaboration agreement exists between the St Petersburg State University and the UFS (Russian Science Foundation grant 14-43-00017). Students from our university have visited and conducted research at the St Petersburg State University while some of their students visit and research reaction kinetics at the UFS.

Prof Roodt hosted Valeria Burianova, a student from the St Petersburg University. During her visit at the UFS, she learned about response kinetics. A UFS PhD student, Carla Pretorius, joined the group in Russia where she conducted research on the intermetallic rhodium-rhodium interactions for the formation of nano-wires and -plates, with applications in the micro-electronics industry, and a  potential for harvesting sun energy.

The UFS Department of Chemistry extended its international footprint further with three of its students, Mampotsu Tsosane, Petrus Mokolokolo, and Tom Kama, returning from Switzerland after a six-week research visit in the group of Prof Roger Alberto from the University of Zürich. In return, Prof Roodt hosted a Swiss PhD student, Angelo Frei from Zürich, and taught him more about reaction mechanisms.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept