Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 November 2021 | Story Leonie Bolleurs | Photo Supplied
With her talk on ‘Breaking the walls of darkness’, Emmie Chiyindiko came in second out of the 74 pitches presented at the recent Falling Walls Science Summit.

“I need you to take a moment and imagine trying to do everything that you do every day … without reliable energy. Or I’ll ask you this … How far would you walk to charge your phone if you didn’t have electricity? Would you walk for hours? Kilometres?”

“Well, that’s what millions of people in sub-Saharan Africa do daily to charge their phones. One billion people globally don’t have access to electricity in their homes and in sub-Saharan Africa, more than half of the population remains in the dark.”

This was the introduction to Emmie Chiyindiko’s talk at the recent Falling Walls Science Summit earlier this month. Emmie, who is a PhD student in Chemistry at the University of the Free State (UFS), came in second out of the 74 pitches presented with her talk on ‘Breaking the walls of darkness’ in the ‘Breakthrough of the year in the emerging talents category’.

Falling Walls Lab is a world-class pitching competition, networking forum, and steppingstone that brings together a diverse and interdisciplinary pool of students, researchers, and early-career professionals by providing a stage for breakthrough ideas, both globally and locally. 

Emmie, who sees getting out of bed every morning as just another opportunity to “be the exceptional young black female scientist that I am”, won the local Falling Walls Lab in Cape Town in October, which resulted in her going through to the finals in Berlin. She plans to host the Falling Walls Lab in Zimbabwe, her homeland, next year. 

This innovator and science communicator, whose work has been covered in Forbes Science, News24, and the Sunday Times, among others, refers to her obtaining second place on the international stage for her research as “a tremendous achievement and a new height in my science communication career. That level of recognition from the world leaders in science, technology, and science engagement cannot be overstated”.

Ending energy poverty

She believes Sustainable Development Goal 7 – leaving no one behind and eradicating global poverty – must be preceded by intentional efforts to end energy poverty. “My research on dye-sensitised solar cells (DSSC) with special metal complexes is among the most interesting alternatives to conventional solar cells.”

Emmie explains: “The design of the cells is inspired by photosynthesis – that good old process plants use to transform sunlight into energy via chlorophyll. Instead of a leaf, the cells start with a porous, transparent film of eco-friendly titanium dioxide nanoparticles. The film is also coated with a range of different dyes that absorb scattered sunlight and fluorescent light. When sunlight hits, it excites the electrons in the dye, creating an endless supply of energy. 

The bright side of this research is that there are several benefits to this invention. It produces energy that is cheap, reliable, and relatively simple and inexpensive to produce. Emmie adds: “These next-generation cells also work impeccably in low-light and non-direct sunlight conditions, providing all-year-round energy with no disruptions. DSSC is also three times cheaper than conventional cells and produces 40% more energy.”

Improving livelihoods 

She continues: “It does not degrade in sunlight over time as do other thin-film cells, making the cells last longer, and requiring less frequent replacement. DSSCs are also mechanically strong, because they are made of lightweight materials and do not require special protection from rain or abrasive objects.”

Emmie has proven that solutions to our current energy situation are available. “We are on the cusp of an energy revolution, and we must act now. Solutions are available, and if we do not seize them during a time of crisis, when will we?”

She believes that creating technology like this can end the energy crisis and improve livelihoods. “Billions of people simply lack enough energy to build a better life. Affordable, abundant, and reliable energy can go a long way to store food, power life-saving medical equipment, and run trains and factories. It can help communities to grow and prosper and to access opportunity and dignity. Societies where people have access to energy have lower childhood mortality, a higher life expectancy, they eat better and drink cleaner water, and have a better literacy rate.”

News Archive

Names are not enough: a molecular-based information system is the answer
2016-06-03

Description: Department of Plant Sciences staff Tags: Department of Plant Sciences staff

Prof Wijnand Swart (left) from the Department of
Plant Sciences at the UFS and Prof Pedro Crous
from the Centraalbureau voor Schimmelcultures (CBS),
in the Netherlands.
Photo: Leonie Bolleurs

South Africa is the second-largest exporter of citrus in the world, producing 60% of all citrus grown in the Southern Hemisphere. It exports more than 70 % of its citrus crop to the European Union and USA. Not being able to manage fungal pathogens effectively can have a serious impact on the global trade in not only citrus but also other food and fibre crops, such as bananas, coffee, and cacao.

The Department of Plant Sciences at the University of the Free State (UFS) hosted a public lecture by Prof Pedro W. Crous entitled “Fungal Pathogens Impact Trade in Food and Fibre: The Need to Move Beyond Linnaeus” on the Bloemfontein Campus.

Prof Crous is Director of the world’s largest fungal Biological Resource Centre, the Centraalbureau voor Schimmelcultures (CBS), in the Netherlands. He is also one of the top mycologists in the world.

Since the topic of his lecture was very pertinent to food security and food safety worldwide, it was co-hosted by the Collaborative Consortium for Broadening the Food Base, a multi-institutional research programme managed by Prof Wijnand Swart in the Department of Plant Sciences.

Reconsider the manner in which pathogens are identified

Prof Crous stressed that, because international trade in products from agricultural crops will expand, the introduction of fungal pathogens to new regions will increase. “There is therefore an urgent need to reconsider the manner in which these pathogens are identified and treated,” he said.

According to Prof Crous, the older Linnaean system for naming living organisms cannot deal with future trade-related challenges involving pests and pathogens. A system, able to identify fungi based on their DNA and genetic coding, will equip scientists with the knowledge to know what they are dealing with, and whether it is a friendly or harmful fungus.

Description: The fungus, Botrytis cinerea Tags: The fungus, Botrytis cinerea

The fungus, Botrytis cinerea, cause of grey mould
disease in many fruit crops.
Photo: Prof Wijnand Swart

Embrace the molecular-based information system

Prof Crous said that, as a consequence, scientists must embrace new technologies, such as the molecular-based information system for fungi, in order to provide the required knowledge.

He presented this very exciting system which will govern the manner in which fungal pathogens linked to world trade are described. This system ensures that people from different countries will know with which pathogen they are dealing. Further, it will assist with the management of pathogens, ensuring that harmful pathogens do not spread from one country to another.

More about Prof Pedro Crous


Prof Crous is an Affiliated Professor at six international universities, including the UFS, where he is associated with the Department of Plant Sciences. He has initiated several major activities to facilitate global research on fungal biodiversity, and has published more than 600 scientific papers, many in high impact journals, and authored or edited more than 20 books.

 

 

Biography Prof Pedro Crous
Philosophical Transactions of the Royal Society B


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept