Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 November 2021 | Story Leonie Bolleurs | Photo Supplied
With her talk on ‘Breaking the walls of darkness’, Emmie Chiyindiko came in second out of the 74 pitches presented at the recent Falling Walls Science Summit.

“I need you to take a moment and imagine trying to do everything that you do every day … without reliable energy. Or I’ll ask you this … How far would you walk to charge your phone if you didn’t have electricity? Would you walk for hours? Kilometres?”

“Well, that’s what millions of people in sub-Saharan Africa do daily to charge their phones. One billion people globally don’t have access to electricity in their homes and in sub-Saharan Africa, more than half of the population remains in the dark.”

This was the introduction to Emmie Chiyindiko’s talk at the recent Falling Walls Science Summit earlier this month. Emmie, who is a PhD student in Chemistry at the University of the Free State (UFS), came in second out of the 74 pitches presented with her talk on ‘Breaking the walls of darkness’ in the ‘Breakthrough of the year in the emerging talents category’.

Falling Walls Lab is a world-class pitching competition, networking forum, and steppingstone that brings together a diverse and interdisciplinary pool of students, researchers, and early-career professionals by providing a stage for breakthrough ideas, both globally and locally. 

Emmie, who sees getting out of bed every morning as just another opportunity to “be the exceptional young black female scientist that I am”, won the local Falling Walls Lab in Cape Town in October, which resulted in her going through to the finals in Berlin. She plans to host the Falling Walls Lab in Zimbabwe, her homeland, next year. 

This innovator and science communicator, whose work has been covered in Forbes Science, News24, and the Sunday Times, among others, refers to her obtaining second place on the international stage for her research as “a tremendous achievement and a new height in my science communication career. That level of recognition from the world leaders in science, technology, and science engagement cannot be overstated”.

Ending energy poverty

She believes Sustainable Development Goal 7 – leaving no one behind and eradicating global poverty – must be preceded by intentional efforts to end energy poverty. “My research on dye-sensitised solar cells (DSSC) with special metal complexes is among the most interesting alternatives to conventional solar cells.”

Emmie explains: “The design of the cells is inspired by photosynthesis – that good old process plants use to transform sunlight into energy via chlorophyll. Instead of a leaf, the cells start with a porous, transparent film of eco-friendly titanium dioxide nanoparticles. The film is also coated with a range of different dyes that absorb scattered sunlight and fluorescent light. When sunlight hits, it excites the electrons in the dye, creating an endless supply of energy. 

The bright side of this research is that there are several benefits to this invention. It produces energy that is cheap, reliable, and relatively simple and inexpensive to produce. Emmie adds: “These next-generation cells also work impeccably in low-light and non-direct sunlight conditions, providing all-year-round energy with no disruptions. DSSC is also three times cheaper than conventional cells and produces 40% more energy.”

Improving livelihoods 

She continues: “It does not degrade in sunlight over time as do other thin-film cells, making the cells last longer, and requiring less frequent replacement. DSSCs are also mechanically strong, because they are made of lightweight materials and do not require special protection from rain or abrasive objects.”

Emmie has proven that solutions to our current energy situation are available. “We are on the cusp of an energy revolution, and we must act now. Solutions are available, and if we do not seize them during a time of crisis, when will we?”

She believes that creating technology like this can end the energy crisis and improve livelihoods. “Billions of people simply lack enough energy to build a better life. Affordable, abundant, and reliable energy can go a long way to store food, power life-saving medical equipment, and run trains and factories. It can help communities to grow and prosper and to access opportunity and dignity. Societies where people have access to energy have lower childhood mortality, a higher life expectancy, they eat better and drink cleaner water, and have a better literacy rate.”

News Archive

Louzanne smashes world record despite strong wind
2017-04-13

Description: Louzanne smashes world record  Tags: Louzanne smashes world record

Louzanne Coetzee and her guide
Khothatso Mokone.
Photo: Johan Roux

Despite the terribly windy conditions at this year’s Nedbank National Championships for the Physically Disabled, Louzanne Coetzee managed to improve her world record in the 5 000 m race.

Record improved by almost 40 seconds
Last year, Coetzee, who works at the Institute for Reconciliation and Social Justice at the University of the Free State (UFS), was the first blind athlete to complete the 5 000 m race in less than 20 minutes.

Her own record in the 5 000 m race (T11 category) was 19:17.06 and with the help of her guide, Khothatso Mokone, she improved it by almost 40 seconds. The new national record now stands at 18:37.23.

Coetzee says the evening before the race the winds were terrible, and she started to wonder what would happen during her race. “Even though the wind was a bit tough, overall it was a good race,” she says.

Overjoyed by exceptional time

She says that when she heard her time was a new record, she was completely overjoyed and could not believe it. “I was aiming to run just under 19 seconds but when I heard that my time was not only a personal best but also a new world record, I was over the moon.”

The Championships took place from 31 March to 4 April in Port Elizabeth. Coetzee and Mokone will be in action in a Grand Prix in Switzerland next month.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept