Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 November 2021 | Story Leonie Bolleurs | Photo Tania Allen
Dr Jana Vermaas and Ketshepileone Matlhoko are working on research that leaves your washing clean and fresh without the use of any detergents, which is also beneficial to the environment.

Cold water or hot water? Omo or Skip? Laundry blues is a reality in most households and when you add stains to the equation, then what was supposed to be part of your weekly household routine, becomes frustrating and time consuming. 

Researchers at the University of the Free State (UFS) are conducting research that is putting a whole new environmentally friendly spin on laundry day.

Sustainability and environmental conservation

Dr Jana Vermaas, Lecturer in the Department of Sustainable Food Systems and Development at the UFS, is passionate about textiles and sustainability – almost a decade ago, she conducted a study on the efficacy of anolyte as a disinfectant for textiles.

She describes the process: “During electrochemical activation, a dilute solution of natrium chloride/salt passes through a cylindrical electrolytic cell where the anodic and cathodic chambers are separated. Two separate streams of electrochemically activated water are produced. Anolyte as water was produced at the positive electrode and has a low pH, high oxidation-reduction potential and contains dissolved chloride, oxygen, and hydroxyl radical. It also has an antimicrobial effect.”

The benefits of this process are in line with her enthusiasm for environmental conservation. 

According to Dr Vermaas, the amount of water and chemicals used to clean textile articles is massive. “Chemicals used to disinfect, for example, hospital laundry, are hazardous. Not all laundries in the industry have a closed loop system or try to remove the chemicals before the wastewater is discarded.”

“Different amounts of detergents have various effects on our fauna and flora. Due to their low biodegradability, toxicity, and high absorbance of particles, detergents can reduce the natural water quality, cause pH changes in soil and water, lead to eutrophication (too many nutrients), reduce light transmission, and increase salinity in water sources.”

“But with the catholyte and anolyte process, water returns to its original status, which means that the water solution becomes inactive again after production where it existed in a metastable state while containing many free radicals and a variety of molecules for 48 hours. Thus, no chemicals are left in the wastewater. The water can therefore be recycled, not as potable water but, for example, to flush toilets or to water plants.

“We should do what we can to save water,” she says. 

Should you, like Dr Vermaas, also feel strongly about protecting the environment and want to obtain one of these machines that leaves your washing clean and fresh without the use of any detergents, you will be able to find such an appliance in South Arica. However, it does not come cheap. “It is a bit costly for residential use, but might be more accessible in the future,” states Dr Vermaas, who is of the opinion that it is a more sustainable option for commercial laundries.

Detergency properties and colourfastness 

Recently, more research has been conducted on this topic, but with a focus on the detergency properties of the catholyte to clean different textile fibres (natural and synthetic). Catholyte, she explains, is water produced at the negative electrode with a high pH, low oxidation-reduction potential, containing alkaline minerals. It also has surface active agents that increase the wetting properties, and it is an antioxidant. 

“A master’s student in the department, Ketshepileone Matlhoko, will be submitting her dissertation at the end of November on the possibility of using the catholyte as a scouring agent to clean raw wool,” says Dr Vermaas. 

The department is also conducting studies to investigate the influence of both catholyte and anolyte on colourfastness.

*Graphic: Production of electrolysed water (Nakae and Indaba, 2000). Diagram: Supplied



News Archive

Innovation the focus of 28th Sophia Gray Memorial Lecture
2016-09-06

Description: Stratford furniture design Tags: Stratford furniture design

Stratford never lost his passion for designing
furniture. Pictured here is some of his furniture
exhibited at the Oliewenhuis Art Museum.
Photo: Francois van Vuuren: iFlair Photography

Al Stratford, designer, inventor and architect, presented the 28th Sophia Gray Memorial Lecture on 25 August at the Reservoir at the Oliewenhuis Art Museum in Bloemfontein. The event, hosted by the Department of Architecture at the University of the Free State, was also the opening of an exhibition of Stratford’s work.

In his career of 40 years, Stratford has patented many products and won several awards in industrial design and architecture. He is known in South Africa for his development of innovative building technology such as the Winblok Precast Concrete Window System. In 2009 and 2010, he also served as president of the South African Institute of Architects.

The title of his lecture was: Reductive Innovation in Architecture. Throughout his career, Stratford endeavoured – through his designs and inventions – to apply the principle of “reduction” to the building material he used and technology he examined.

Stratford designs and builds smart buildings
Stratford says a home is the paradigm of self-expression. His career as architect started with the building of five houses in Gonubie, near East London. Everything he knew about architecture at that stage, he had taught himself by reading on the subject at the local library. Later on, he achieved great heights in his career by designing and building, among others, the Stratford Guesthouse; the sustainable and resourcefully designed campus buildings for the University of Fort Hare (an institutional building not utilising any electrical air-conditioning); the Edenvale Baptist Church; and a community hall.

His technology is widely used in the building industry

“The arrogance in me gets humiliated when I
see what other people and God has done.”


His technical drawing skills, acquired at an early age during his training as motor mechanic, are still practised years later, particularly in his inventions. Stratford is the inventor of technology commonly used in the building industry today. Of these, the Winblok window system which he patented in 1981, is one of his best known patents. The use of these windows is characteristic of many of the buildings he designed and built. Other technology he invented and patented, includes the Winstep stairs, the Windeck flooring system, and the StratFlex furniture technology.

Furniture designs win him awards
He likes to quote architect Ludwig Mies van der Rohe: “A chair is a very difficult object. A skyscraper is easier.” Stratford started designing and manufacturing his own furniture and never lost this passion. In 2013, he won the Innovation Award at the Design Indaba for his “flat pack” furniture technology.

The humble Stratford – designer, inventor, industrialist, and architect – says he is simply playing around with God’s creation. “The arrogance in me gets humiliated when I see what other people and God has done.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept