Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 October 2021 | Story Nonsindiso Qwabe | Photo Nonsindiso Qwabe
From the right: Dr Ralph Clark,, with fellow researchers, Dr Stephanie Payne, Dr Sandy-Lynn Steenhuisen, Dr Onalenna Gwate and Evelin Iseli, a Swiss PhD student on RangeX at the open top chambers on the Maloti-Drakensberg mountain range.

What impact has global change had on alpine vegetation in our own mountains and those around the world, and why are certain plants in mountains around the world rapidly expanding their ranges?

This is the question on which the Afromontane Research Unit (ARU) on the Qwaqwa Campus will be shining the research lens over the next three years, through Project ‘RangeX’, a multi-institutional research consortium under the Mountain Invasive Research Network (MIREN), with ETH Zurich (Switzerland) leading the research project. The project is underway in the Witsieshoek area of the Free State component of the Maloti-Drakensberg, as part of a global consortium to better understand the ecological drivers of range-expanding plant species in mountains around the world.

South Africa’s participation in the project is led by the ARU Director, Dr Ralph Clark. Other RangeX partners are Germany, Norway, Sweden, Denmark, Australia, China, Chile, and France, with research locations in the Swiss Alps, Himalayas, Andes, Australian Alps, and Scandes.

The official launch of the research site for the Maloti-Drakensberg mountains, which took place on 20 October, marked the beginning of the South African component of globally coordinated research to understand how range-expanding species may affect current alpine environments under future climatic conditions. The launch involved a site visit to the summit of the Maloti-Drakensberg. Situated at 3 100 m above sea level in the Witsieshoek area, the research seeks to determine whether typical range-expanding species might colonise the alpine zone above 2 800 m under a simulated future warmer climate. 

The South African component of RangeX is funded by the Department of Science and Innovation (DSI) through BiodivERsA, an initiative of the European Union’s Horizon 2020, which promotes research on biodiversity and ecosystem services and offers innovative opportunities for the conservation and sustainable management of biodiversity.
Speaking at the launch of the project, Dr Clark said the alpine zone of the Maloti-Drakensberg is an ecologically severe environment, resulting in only specialised species being found above 2 800 m. “However, with climate warming, it can be expected that many lower elevation plants might start to ‘climb’ the mountain and invade its upper reaches. This will have a major impact on ecology, livelihoods, endemic alpine species, and water production.”

This is the first time that such experiments will be undertaken in the alpine context of the Maloti-Drakensberg, Dr Clark explained. The ARU is using this project to promote an ambitious and long-term alpine research programme centred on the Mont-aux-Sources area, where the Free State, KwaZulu-Natal, and Lesotho meet.  

Toto Matshediso, Deputy Director: Strategic Partnerships at DSI, said the Range X project with South African funding from the DSI was aligned with the departmental priorities for investment in global change and biodiversity research and innovation. 

“The research conducted is strengthening international cooperation in terms of research collaboration with its European Union partners as a region, as well as bilateral partners involved in the project. The project is also located in an area that has been historically disadvantaged, and the DSI is proud to be part of contributors to mountain research initiatives and direct contribution to the local community. The project also places the spotlight on the rich biodiversity data of the area, and how it could contribute to the overall government priorities regarding biodiversity.”

News Archive

Student excels at international level with research in Inorganic Chemistry
2015-09-21


Carla Pretorius is currently conducting research in
Inorganic Chemistry at the St Petersburg University,
Russia.

Photo:Supplied

Carla Pretorius completed her PhD in Inorganic Chemistry recently, with a thesis entitled “Structural and Reactivity Study of Rhodium(I) Carbonyl Complexes as Model Nano Assemblies”, and has just received her results. The assessors were very impressed, and she will graduate at the next UFS Summer Graduation in December 2015.

She is currently conducting research in St Petersburg, Russia, by invitation. She is working in the group of Prof Vadim Kukushkin of the St Petersburg University, under a bilateral collaboration agreement between the groups of Prof Kukuskin (SPBU) and Prof André Roodt (Head of the Department of Chemistry at the UFS).

Her research involves the intermetallic rhodium-rhodium interactions for the formation of nano-wires and -plates, with applications in the micro-electronics industry, and potentially for harvesting sun energy. She was one of only three young South African scientists invited to attend the workshop “Hot Topics in Contemporary Crystallography” in Split in Croatia during 2014. More recently, she received the prize for best student poster presentation at the international symposium, Indaba 8 in Skukuza in the Kruger National Park, which was judged by an international panel.

Carla was also one of the few international PhD students invited to present a lecture at the 29th European Crystallographic Meeting (ECM29) in Rovinj, Croatia (23-28 August 2015; more than 1 000 delegates from 51 countries). As a result of this lecture, she has just received an invitation to start a collaborative project with a Polish research group at the European Synchrotron Research Facility (ESRF) in Grenoble, France.

According to Prof Roodt, the ESRF ID09B beam line is the only one of its kind in Europe designed for time-resolved Laue diffraction experiments. It has a time-resolution of up to one tenth of a nanosecond, after activation by a laser pulse 100 times shorter (one tenth of a nanosecond when compared to one second is the equivalent of one second compared to 300 years). The results from these experiments will broaden the knowledge on light-induced transformations of very short processes; for example, as in photochemical reactions associated with sun energy harvesting, and will assist in the development of better materials to capture these.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept