Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 October 2021 | Story André Damons | Photo Supplied
Prof Alicia Sherriff, head of the Department of Oncology at the University of the Free State (UFS), says Breast Cancer Awareness Month is important as continued awareness-making of the general population on the risks and signs of breast cancer are essential to ensure early diagnoses and improve the possibility of long-term survival.

Breast cancer among South African women is increasing and is one of the most common cancers among women in South Africa and at Universitas Academic Complex in the Free State, is only second to cervical cancer. 

Prof Alicia Sherriff, head of the Department of Oncology at the University of the Free State (UFS), says 1.8% of breast cancer diagnoses in South Africa are made in men. At Universitas Annex, they treat on average 350-400 new breast cancer patients annually. They have not seen an increase in cancer cases in the past two years; Prof Sherriff says the COVID-19 pandemic definitely had an impact on patients accessing health care and patient referrals.

It is for this reason that Breast Cancer Awareness Month is so important since continued awareness-making of the general population on the risks and signs of breast cancer are essential to ensure early diagnoses and improve the possibility of long-term survival. Early detection is of the utmost importance, since breast cancer is treatable and curable. Awareness is critically important in all age groups and communities. 

Globally, female breast cancer has now surpassed lung cancer as the leading cause of cancer incidence in 2020, with an estimated 2.3 million new cases, representing 11.7% of all cancer cases. 

This is a according to an article in the American Cancer Society which also states that breast cancer accounts for one in four cancer cases in women and is the cause of deaths for one in six patients. It is the fifth leading cause of cancer mortality worldwide, with 685,000 deaths.

According to Prof Sherriff, breast cancer is the abnormal growth of breast tissue. The cause is unknown in most patients but there are some factors that increase your risk of developing breast cancer; for example familial genetic syndromes, smoking and excessive alcohol use and obesity. 

“It is important to note that a person can develop breast cancer even if there is no family history or any of the above-mentioned risk factors. The risk of developing breast cancer increases with age. That said, women as young as 18 years of age have been diagnosed with breast cancer. Self-examination is important so women can be familiar with their breasts and any change will be picked up early. When you self-examine always do it at the same time of the menstrual cycle to experience an equal impact of the hormonal cycle in the female body,” says Prof Sherriff. 

Breast cancer in young women

Less than 2% of patients diagnosed with breast cancer are younger than 34years of age, but it is important to realise that it can happen and if it does arise in the younger age group it tends to be more aggressive and related to genetic mutation.

“The young breast tends to be very dense and therefore more difficult to interpret on a mammogram. For females younger than 40-45 years or women with dense breast tissue, breast sonar is advised to evaluate the breast and sometimes an MRI (magnetic resonance imaging) might be requested, but this is not standard practice. 

“Reproductive and hormonal risk factors to consider are: Early age at menarche, later age at menopause, advanced age at first birth, fewer number of children, less breastfeeding, menopausal hormone therapy, oral contraceptives. These factors all increase the duration of the female breast being exposed to higher levels of estrogen. Certain lifestyle risk factors (alcohol intake, excess body weight, physical inactivity) also increase the levels of hormonal exposure,” says Prof Sherriff. 

Breast cancer rising 

According to an article in the American Cancer Society, incidence rates of breast cancer are rising fast in transitioning countries in South America, Africa, and Asia as well as in high-income Asian countries (Japan and the Republic of Korea), where rates are historically low. 

Dramatic changes in lifestyle, sociocultural, and built environments brought about by growing economies and an increase in the proportion of women in the industrial workforce have had an impact on the prevalence of breast cancer risk factors which include the postponement of childbearing and having fewer children, greater levels of excess body weight and physical inactivity, and have resulted in a convergence toward the risk factor profile of Western countries and narrowing international gaps in breast cancer morbidity.

“Some of the most rapid increases are occurring in sub-Saharan Africa. Between the mid-1990s and mid-2010s, incidence rates increased by more than 5% a year in Malawi (Blantyre), Nigeria (Ibadan), the Seychelles, and 3% to 4% a year in South Africa (Eastern Cape) and Zimbabwe (Harare). Mortality rates in sub-Saharan regions have increased simultaneously and rank now among the world’s highest, reflecting weak health infrastructure and subsequently poor survival outcomes. 

“The five-year age-standardised relative survival in 12 sub-Saharan African countries was 66% for cases diagnosed during 2008 through 2015, sharply contrasting with 85% to 90% for cases diagnosed in high-income countries during 2010 through 2014. The country-specific estimate was as low as 12% in Uganda (Kyadondo) and 20% to 60% in South Africa (Eastern Cape), Kenya (Eldoret), and Zimbabwe (Harare),47% comparable to 55% in the US state of Connecticut and 57% in Norway during the late 1940s,48 3 decades before the introduction of mammography screening and modern therapies,” the article reads.

Low survival rates in sub-Saharan Africa are largely attributable to late-stage presentation. According to a report summarising 83 studies across 17 sub-Saharan African countries, 77% of all stage cases were stage III/IV at diagnosis. Because organised, population-based mammography screening programs may not be cost effective or feasible in low-resource settings, efforts to promote early detection through improved breast cancer awareness and clinical breast examination by skilled health providers, followed by timely and appropriate treatment, are essential components to improving survival.

Physical symptoms and treatments 

Prof Sherriff says screening (checking for disease when there are no symptoms) for breast cancer in the normal population should start at age 40-45, where possible and yearly mammogram with sonar would be preferred. If there is a strong family history with the diagnoses of breast cancer earlier screening should start five to 10 years prior to first diagnoses. Self examination is an essential component of screening. 

The physical symptoms you can experience that might be indicative of breast cancer are:
- A lump in the breast which does not have to be painful 
- Changes of the skin of the breast referring to dimpling, the colour, or texture
- Changes in the appearance of the nipple (areola)
- A clear or bloody discharge from the nipple

The treatment for breast cancer consists of a combination of surgery, chemotherapy, radiation therapy and hormonal therapy. The treatment is individualised based on patient and cancer factors. Some patients will need all of the above whilst others may not. It is essential that the decision on the appropriate management is made in collaboration with the patient as part of the multidisciplinary team of specialists and allied health care workers.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept