Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 October 2021 | Story André Damons | Photo Supplied
Prof Alicia Sherriff, head of the Department of Oncology at the University of the Free State (UFS), says Breast Cancer Awareness Month is important as continued awareness-making of the general population on the risks and signs of breast cancer are essential to ensure early diagnoses and improve the possibility of long-term survival.

Breast cancer among South African women is increasing and is one of the most common cancers among women in South Africa and at Universitas Academic Complex in the Free State, is only second to cervical cancer. 

Prof Alicia Sherriff, head of the Department of Oncology at the University of the Free State (UFS), says 1.8% of breast cancer diagnoses in South Africa are made in men. At Universitas Annex, they treat on average 350-400 new breast cancer patients annually. They have not seen an increase in cancer cases in the past two years; Prof Sherriff says the COVID-19 pandemic definitely had an impact on patients accessing health care and patient referrals.

It is for this reason that Breast Cancer Awareness Month is so important since continued awareness-making of the general population on the risks and signs of breast cancer are essential to ensure early diagnoses and improve the possibility of long-term survival. Early detection is of the utmost importance, since breast cancer is treatable and curable. Awareness is critically important in all age groups and communities. 

Globally, female breast cancer has now surpassed lung cancer as the leading cause of cancer incidence in 2020, with an estimated 2.3 million new cases, representing 11.7% of all cancer cases. 

This is a according to an article in the American Cancer Society which also states that breast cancer accounts for one in four cancer cases in women and is the cause of deaths for one in six patients. It is the fifth leading cause of cancer mortality worldwide, with 685,000 deaths.

According to Prof Sherriff, breast cancer is the abnormal growth of breast tissue. The cause is unknown in most patients but there are some factors that increase your risk of developing breast cancer; for example familial genetic syndromes, smoking and excessive alcohol use and obesity. 

“It is important to note that a person can develop breast cancer even if there is no family history or any of the above-mentioned risk factors. The risk of developing breast cancer increases with age. That said, women as young as 18 years of age have been diagnosed with breast cancer. Self-examination is important so women can be familiar with their breasts and any change will be picked up early. When you self-examine always do it at the same time of the menstrual cycle to experience an equal impact of the hormonal cycle in the female body,” says Prof Sherriff. 

Breast cancer in young women

Less than 2% of patients diagnosed with breast cancer are younger than 34years of age, but it is important to realise that it can happen and if it does arise in the younger age group it tends to be more aggressive and related to genetic mutation.

“The young breast tends to be very dense and therefore more difficult to interpret on a mammogram. For females younger than 40-45 years or women with dense breast tissue, breast sonar is advised to evaluate the breast and sometimes an MRI (magnetic resonance imaging) might be requested, but this is not standard practice. 

“Reproductive and hormonal risk factors to consider are: Early age at menarche, later age at menopause, advanced age at first birth, fewer number of children, less breastfeeding, menopausal hormone therapy, oral contraceptives. These factors all increase the duration of the female breast being exposed to higher levels of estrogen. Certain lifestyle risk factors (alcohol intake, excess body weight, physical inactivity) also increase the levels of hormonal exposure,” says Prof Sherriff. 

Breast cancer rising 

According to an article in the American Cancer Society, incidence rates of breast cancer are rising fast in transitioning countries in South America, Africa, and Asia as well as in high-income Asian countries (Japan and the Republic of Korea), where rates are historically low. 

Dramatic changes in lifestyle, sociocultural, and built environments brought about by growing economies and an increase in the proportion of women in the industrial workforce have had an impact on the prevalence of breast cancer risk factors which include the postponement of childbearing and having fewer children, greater levels of excess body weight and physical inactivity, and have resulted in a convergence toward the risk factor profile of Western countries and narrowing international gaps in breast cancer morbidity.

“Some of the most rapid increases are occurring in sub-Saharan Africa. Between the mid-1990s and mid-2010s, incidence rates increased by more than 5% a year in Malawi (Blantyre), Nigeria (Ibadan), the Seychelles, and 3% to 4% a year in South Africa (Eastern Cape) and Zimbabwe (Harare). Mortality rates in sub-Saharan regions have increased simultaneously and rank now among the world’s highest, reflecting weak health infrastructure and subsequently poor survival outcomes. 

“The five-year age-standardised relative survival in 12 sub-Saharan African countries was 66% for cases diagnosed during 2008 through 2015, sharply contrasting with 85% to 90% for cases diagnosed in high-income countries during 2010 through 2014. The country-specific estimate was as low as 12% in Uganda (Kyadondo) and 20% to 60% in South Africa (Eastern Cape), Kenya (Eldoret), and Zimbabwe (Harare),47% comparable to 55% in the US state of Connecticut and 57% in Norway during the late 1940s,48 3 decades before the introduction of mammography screening and modern therapies,” the article reads.

Low survival rates in sub-Saharan Africa are largely attributable to late-stage presentation. According to a report summarising 83 studies across 17 sub-Saharan African countries, 77% of all stage cases were stage III/IV at diagnosis. Because organised, population-based mammography screening programs may not be cost effective or feasible in low-resource settings, efforts to promote early detection through improved breast cancer awareness and clinical breast examination by skilled health providers, followed by timely and appropriate treatment, are essential components to improving survival.

Physical symptoms and treatments 

Prof Sherriff says screening (checking for disease when there are no symptoms) for breast cancer in the normal population should start at age 40-45, where possible and yearly mammogram with sonar would be preferred. If there is a strong family history with the diagnoses of breast cancer earlier screening should start five to 10 years prior to first diagnoses. Self examination is an essential component of screening. 

The physical symptoms you can experience that might be indicative of breast cancer are:
- A lump in the breast which does not have to be painful 
- Changes of the skin of the breast referring to dimpling, the colour, or texture
- Changes in the appearance of the nipple (areola)
- A clear or bloody discharge from the nipple

The treatment for breast cancer consists of a combination of surgery, chemotherapy, radiation therapy and hormonal therapy. The treatment is individualised based on patient and cancer factors. Some patients will need all of the above whilst others may not. It is essential that the decision on the appropriate management is made in collaboration with the patient as part of the multidisciplinary team of specialists and allied health care workers.

News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept