Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 September 2021 | Story Dr Jan du Plessis and Dr Mampoi Jonas

Opinion article by Dr Jan du Plessis, Head of the Paediatric Oncology Unit, and Dr Mampoi Jonas, senior lecturer in the Paediatric Oncology, University of the Free State 


For many years childhood cancer has remained a taboo subject in our communities, mainly because too little was or is known about it. Many have known or come across an adult with cancer but for a child to be diagnosed with cancer is totally unheard of. No parent wants to hear the news that their ‘heartbeat in human form’ has fallen ill. One moment they are OK, the next, waves of emotions flood the parents. Mixed in all this are feelings of guilt, anxiety, uncertainty, constant wondering if they could have done anything differently. Most importantly the question, often unuttered remains “Is my child dying/ how much time do I have”.

Most young cancer patients live in developing countries

Childhood cancer is rare and involves only 1% of all cancers. It is reported that globally approximately 70% of all childhood cancer cases occur in low- and middle-income countries. If diagnosed early, approximately 70-80% of childhood cancers are curable in developed countries. Unfortunately, most children with cancer live in developing countries with limited resources and the cure rate does not reflect the same success. The low survival rates can be attributed to poor diagnosis coupled with too few specially trained doctors and nurses and the misbelief that child cancer is too difficult to cure. However, even in resource-poor environments at least 50% of childhood cancers can be cured.

Numerically, childhood cancer is not a significant cause of death in sub-Saharan African countries, which leaves childhood cancer less of a priority. In Africa, the most common paediatric health problems are malnutrition, infectious diseases such as HIV and tuberculosis. Whereas in Western countries, after accidents, cancer is the second leading cause of death in children and is a burden to the health system.

A study done by Stones et al in 2014 published the survival rates for children with cancer in South Africa at two different Units (Universitas and Tygerberg Hospitals) to be around 52%. The conclusion was that the children present late and with advanced-stage disease, which obviously affects their outcome. They also concluded that strategies to improve awareness of childhood cancer should be improved. Identifying early warning signs of childhood cancer is critical for parents and healthcare workers to ensure early diagnosis and improved cure rates. We often refer to these as red flag signs that should raise suspicion of the possibility of cancer as a diagnosis for the presenting patient.

Almost 85% of childhood cancers will present with the red flag signs, which could suggest the possibility of a childhood cancer, namely:
1. Pallor and purpura (bruising)
2. Bone and joint pain
3. Lymphadenopathy
4. Unexplained masses on any body part
5. Unexplained neurological signs
6. Changes in the orbit or eye
7. Persistent unexplained fever and weight loss

The most common cancer in children is leukaemia (blood cancer). Brain tumours are the most common non-haematological cancers, followed by nephroblastomas (kidney cancers) and neuroblastomas (sympathetic chain cells, the adrenal glands the most common site of origin).

We honour the children currently battling cancer and their families 

Once there is clinical suspicion of cancer, the child should be investigated or referred for the relevant investigations to be conducted to get to the right diagnosis. Treatment for childhood cancer includes chemotherapy, surgery or radiotherapy. These may be given separately or in combination depending on the diagnosis. Many models of care exist, but regardless of the outcome, children and families who receive compassionate, holistic care of symptomatology and address their non-physical needs are able to face their illness with dignity and energy.  

Childhood Cancer should not remain a taboo subject in South Africa and should be a topic of conversation more often so that people can be educated regarding the early warning signs and become more aware of its occurrence amongst children. Get the word out that a cure is possible. This month, which is known as Childhood Cancer Awareness Month, and throughout the year, we honour the children currently battling cancer, the families who love them, the clinicians and other caregivers treating them, the survivors of childhood cancer and the children who lost their lives to childhood cancer. 

Authors

Dr Jan Du Plessis for web 
Dr Jan du Plessis is the Head of the Paediatric  Oncology Unit in the Faculty of Health Sciences at
the University of the Free State (UFS).  


DrJonas for web
Dr Mampoi Jonas is a senior lecturer in the Paediatric Oncology, University of the Free State (UFS).

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept