Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 September 2021 | Story Dr Jan du Plessis and Dr Mampoi Jonas

Opinion article by Dr Jan du Plessis, Head of the Paediatric Oncology Unit, and Dr Mampoi Jonas, senior lecturer in the Paediatric Oncology, University of the Free State 


For many years childhood cancer has remained a taboo subject in our communities, mainly because too little was or is known about it. Many have known or come across an adult with cancer but for a child to be diagnosed with cancer is totally unheard of. No parent wants to hear the news that their ‘heartbeat in human form’ has fallen ill. One moment they are OK, the next, waves of emotions flood the parents. Mixed in all this are feelings of guilt, anxiety, uncertainty, constant wondering if they could have done anything differently. Most importantly the question, often unuttered remains “Is my child dying/ how much time do I have”.

Most young cancer patients live in developing countries

Childhood cancer is rare and involves only 1% of all cancers. It is reported that globally approximately 70% of all childhood cancer cases occur in low- and middle-income countries. If diagnosed early, approximately 70-80% of childhood cancers are curable in developed countries. Unfortunately, most children with cancer live in developing countries with limited resources and the cure rate does not reflect the same success. The low survival rates can be attributed to poor diagnosis coupled with too few specially trained doctors and nurses and the misbelief that child cancer is too difficult to cure. However, even in resource-poor environments at least 50% of childhood cancers can be cured.

Numerically, childhood cancer is not a significant cause of death in sub-Saharan African countries, which leaves childhood cancer less of a priority. In Africa, the most common paediatric health problems are malnutrition, infectious diseases such as HIV and tuberculosis. Whereas in Western countries, after accidents, cancer is the second leading cause of death in children and is a burden to the health system.

A study done by Stones et al in 2014 published the survival rates for children with cancer in South Africa at two different Units (Universitas and Tygerberg Hospitals) to be around 52%. The conclusion was that the children present late and with advanced-stage disease, which obviously affects their outcome. They also concluded that strategies to improve awareness of childhood cancer should be improved. Identifying early warning signs of childhood cancer is critical for parents and healthcare workers to ensure early diagnosis and improved cure rates. We often refer to these as red flag signs that should raise suspicion of the possibility of cancer as a diagnosis for the presenting patient.

Almost 85% of childhood cancers will present with the red flag signs, which could suggest the possibility of a childhood cancer, namely:
1. Pallor and purpura (bruising)
2. Bone and joint pain
3. Lymphadenopathy
4. Unexplained masses on any body part
5. Unexplained neurological signs
6. Changes in the orbit or eye
7. Persistent unexplained fever and weight loss

The most common cancer in children is leukaemia (blood cancer). Brain tumours are the most common non-haematological cancers, followed by nephroblastomas (kidney cancers) and neuroblastomas (sympathetic chain cells, the adrenal glands the most common site of origin).

We honour the children currently battling cancer and their families 

Once there is clinical suspicion of cancer, the child should be investigated or referred for the relevant investigations to be conducted to get to the right diagnosis. Treatment for childhood cancer includes chemotherapy, surgery or radiotherapy. These may be given separately or in combination depending on the diagnosis. Many models of care exist, but regardless of the outcome, children and families who receive compassionate, holistic care of symptomatology and address their non-physical needs are able to face their illness with dignity and energy.  

Childhood Cancer should not remain a taboo subject in South Africa and should be a topic of conversation more often so that people can be educated regarding the early warning signs and become more aware of its occurrence amongst children. Get the word out that a cure is possible. This month, which is known as Childhood Cancer Awareness Month, and throughout the year, we honour the children currently battling cancer, the families who love them, the clinicians and other caregivers treating them, the survivors of childhood cancer and the children who lost their lives to childhood cancer. 

Authors

Dr Jan Du Plessis for web 
Dr Jan du Plessis is the Head of the Paediatric  Oncology Unit in the Faculty of Health Sciences at
the University of the Free State (UFS).  


DrJonas for web
Dr Mampoi Jonas is a senior lecturer in the Paediatric Oncology, University of the Free State (UFS).

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept