Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 September 2021 | Story Dr Jan du Plessis and Dr Mampoi Jonas

Opinion article by Dr Jan du Plessis, Head of the Paediatric Oncology Unit, and Dr Mampoi Jonas, senior lecturer in the Paediatric Oncology, University of the Free State 


For many years childhood cancer has remained a taboo subject in our communities, mainly because too little was or is known about it. Many have known or come across an adult with cancer but for a child to be diagnosed with cancer is totally unheard of. No parent wants to hear the news that their ‘heartbeat in human form’ has fallen ill. One moment they are OK, the next, waves of emotions flood the parents. Mixed in all this are feelings of guilt, anxiety, uncertainty, constant wondering if they could have done anything differently. Most importantly the question, often unuttered remains “Is my child dying/ how much time do I have”.

Most young cancer patients live in developing countries

Childhood cancer is rare and involves only 1% of all cancers. It is reported that globally approximately 70% of all childhood cancer cases occur in low- and middle-income countries. If diagnosed early, approximately 70-80% of childhood cancers are curable in developed countries. Unfortunately, most children with cancer live in developing countries with limited resources and the cure rate does not reflect the same success. The low survival rates can be attributed to poor diagnosis coupled with too few specially trained doctors and nurses and the misbelief that child cancer is too difficult to cure. However, even in resource-poor environments at least 50% of childhood cancers can be cured.

Numerically, childhood cancer is not a significant cause of death in sub-Saharan African countries, which leaves childhood cancer less of a priority. In Africa, the most common paediatric health problems are malnutrition, infectious diseases such as HIV and tuberculosis. Whereas in Western countries, after accidents, cancer is the second leading cause of death in children and is a burden to the health system.

A study done by Stones et al in 2014 published the survival rates for children with cancer in South Africa at two different Units (Universitas and Tygerberg Hospitals) to be around 52%. The conclusion was that the children present late and with advanced-stage disease, which obviously affects their outcome. They also concluded that strategies to improve awareness of childhood cancer should be improved. Identifying early warning signs of childhood cancer is critical for parents and healthcare workers to ensure early diagnosis and improved cure rates. We often refer to these as red flag signs that should raise suspicion of the possibility of cancer as a diagnosis for the presenting patient.

Almost 85% of childhood cancers will present with the red flag signs, which could suggest the possibility of a childhood cancer, namely:
1. Pallor and purpura (bruising)
2. Bone and joint pain
3. Lymphadenopathy
4. Unexplained masses on any body part
5. Unexplained neurological signs
6. Changes in the orbit or eye
7. Persistent unexplained fever and weight loss

The most common cancer in children is leukaemia (blood cancer). Brain tumours are the most common non-haematological cancers, followed by nephroblastomas (kidney cancers) and neuroblastomas (sympathetic chain cells, the adrenal glands the most common site of origin).

We honour the children currently battling cancer and their families 

Once there is clinical suspicion of cancer, the child should be investigated or referred for the relevant investigations to be conducted to get to the right diagnosis. Treatment for childhood cancer includes chemotherapy, surgery or radiotherapy. These may be given separately or in combination depending on the diagnosis. Many models of care exist, but regardless of the outcome, children and families who receive compassionate, holistic care of symptomatology and address their non-physical needs are able to face their illness with dignity and energy.  

Childhood Cancer should not remain a taboo subject in South Africa and should be a topic of conversation more often so that people can be educated regarding the early warning signs and become more aware of its occurrence amongst children. Get the word out that a cure is possible. This month, which is known as Childhood Cancer Awareness Month, and throughout the year, we honour the children currently battling cancer, the families who love them, the clinicians and other caregivers treating them, the survivors of childhood cancer and the children who lost their lives to childhood cancer. 

Authors

Dr Jan Du Plessis for web 
Dr Jan du Plessis is the Head of the Paediatric  Oncology Unit in the Faculty of Health Sciences at
the University of the Free State (UFS).  


DrJonas for web
Dr Mampoi Jonas is a senior lecturer in the Paediatric Oncology, University of the Free State (UFS).

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept