Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 September 2021 | Story Dr Jan du Plessis and Dr Mampoi Jonas

Opinion article by Dr Jan du Plessis, Head of the Paediatric Oncology Unit, and Dr Mampoi Jonas, senior lecturer in the Paediatric Oncology, University of the Free State 


For many years childhood cancer has remained a taboo subject in our communities, mainly because too little was or is known about it. Many have known or come across an adult with cancer but for a child to be diagnosed with cancer is totally unheard of. No parent wants to hear the news that their ‘heartbeat in human form’ has fallen ill. One moment they are OK, the next, waves of emotions flood the parents. Mixed in all this are feelings of guilt, anxiety, uncertainty, constant wondering if they could have done anything differently. Most importantly the question, often unuttered remains “Is my child dying/ how much time do I have”.

Most young cancer patients live in developing countries

Childhood cancer is rare and involves only 1% of all cancers. It is reported that globally approximately 70% of all childhood cancer cases occur in low- and middle-income countries. If diagnosed early, approximately 70-80% of childhood cancers are curable in developed countries. Unfortunately, most children with cancer live in developing countries with limited resources and the cure rate does not reflect the same success. The low survival rates can be attributed to poor diagnosis coupled with too few specially trained doctors and nurses and the misbelief that child cancer is too difficult to cure. However, even in resource-poor environments at least 50% of childhood cancers can be cured.

Numerically, childhood cancer is not a significant cause of death in sub-Saharan African countries, which leaves childhood cancer less of a priority. In Africa, the most common paediatric health problems are malnutrition, infectious diseases such as HIV and tuberculosis. Whereas in Western countries, after accidents, cancer is the second leading cause of death in children and is a burden to the health system.

A study done by Stones et al in 2014 published the survival rates for children with cancer in South Africa at two different Units (Universitas and Tygerberg Hospitals) to be around 52%. The conclusion was that the children present late and with advanced-stage disease, which obviously affects their outcome. They also concluded that strategies to improve awareness of childhood cancer should be improved. Identifying early warning signs of childhood cancer is critical for parents and healthcare workers to ensure early diagnosis and improved cure rates. We often refer to these as red flag signs that should raise suspicion of the possibility of cancer as a diagnosis for the presenting patient.

Almost 85% of childhood cancers will present with the red flag signs, which could suggest the possibility of a childhood cancer, namely:
1. Pallor and purpura (bruising)
2. Bone and joint pain
3. Lymphadenopathy
4. Unexplained masses on any body part
5. Unexplained neurological signs
6. Changes in the orbit or eye
7. Persistent unexplained fever and weight loss

The most common cancer in children is leukaemia (blood cancer). Brain tumours are the most common non-haematological cancers, followed by nephroblastomas (kidney cancers) and neuroblastomas (sympathetic chain cells, the adrenal glands the most common site of origin).

We honour the children currently battling cancer and their families 

Once there is clinical suspicion of cancer, the child should be investigated or referred for the relevant investigations to be conducted to get to the right diagnosis. Treatment for childhood cancer includes chemotherapy, surgery or radiotherapy. These may be given separately or in combination depending on the diagnosis. Many models of care exist, but regardless of the outcome, children and families who receive compassionate, holistic care of symptomatology and address their non-physical needs are able to face their illness with dignity and energy.  

Childhood Cancer should not remain a taboo subject in South Africa and should be a topic of conversation more often so that people can be educated regarding the early warning signs and become more aware of its occurrence amongst children. Get the word out that a cure is possible. This month, which is known as Childhood Cancer Awareness Month, and throughout the year, we honour the children currently battling cancer, the families who love them, the clinicians and other caregivers treating them, the survivors of childhood cancer and the children who lost their lives to childhood cancer. 

Authors

Dr Jan Du Plessis for web 
Dr Jan du Plessis is the Head of the Paediatric  Oncology Unit in the Faculty of Health Sciences at
the University of the Free State (UFS).  


DrJonas for web
Dr Mampoi Jonas is a senior lecturer in the Paediatric Oncology, University of the Free State (UFS).

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept