Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 September 2021 | Story André Damons | Photo Supplied
Dr Jacques Maritz, a lecturer at the UFS Department of Engineering Sciences (EnSci), recently hosted and chaired a mini-symposium on the role of UFS Grid Related Research.

During 2020 the University of the Free State (UFS) Qwaqwa campus experienced a loss of electricity supply for 10% of the year which led to emergency generation costs reaching R1.2-million. 

This is one of the problems Dr Jacques Maritz, a lecturer at the UFS Department of Engineering Sciences (EnSci), and the UFS Grid Related Research group are looking to address with their research on green and sustainable digital transformation efforts of local campus power grids.

Dr Maritz recently hosted and chaired a mini-symposium on the role of UFS Grid Related Research during which research strategies, visions and missions were shared by different research groups. These groups included the UFS Grid Related Research Group (presented by Dr Maritz), the UFS Initiative for Digital Futures (presented by Mr Herkulaas Combrink and Prof Katinka de Wet, both interim directors) and the Block Chain Research Group (presented by Mr Riaan Bezuidenhout, a PhD student at the Department of Computer Science and Informatics).  

Dr More Manda, on behalf of merSETA strategy and research, presented its strategic priorities for the next couple of years, which included the observation to drive the development of Digital and Green Skills. Mr Nicolaas Esterhuysen, from UFS Department of University Estates, also presented a live demonstration of the current state of the UFS smart grid. Industry partners presented a synopsis of their efforts and products pertaining to the evolution of digital and green campus grids. 

The symposium highlighted the existing synergies and visions

The symposium boasted an international keynote by Dr Veselin Skendzic (locally supported by Mr Deon Joubert, SEL), a principal research engineer with Schweitzer Engineering Laboratories  Inc (SEL), on the detection of power grid faults using the phenomena of travelling waves.

“The symposium highlighted the existing synergies and visions shared between UFS research groups, our industry partners and funders. An innovative model of industry engagement via shared case studies and technical papers, with emphasis on local campus grids, was explored and discussed. 

“The UFS Initiative for Digital Futures placed emphasis on the value-add of multidisciplinary research teams when attempting to solve the most critical social problems, especially in the South African digital paradigm. One of the notable successes of this symposium was that it provided a platform for several research groups within the paradigms of science, engineering and social sciences to synchronise with industry and showcase their expertise towards the effort of creating green and sustainable campus grids,” says Dr Martiz.
Mr Nicolaas Esterhuysen, from UFS Department of University Estates, also presented a live demonstration
of the current state of the UFS smart grid. (Photo:Supplied)

According to him, the critical discussions observed during the symposium aim towards future efforts that include working more closely with industry partners and leveraging internal collaborations in order to advance the digitalisation, optimisation, reliability and research-readiness associated with campus grids. The latter is also part of the mandate of the UFS Grid Related Research Group to build local research instruments that will serve a wider community of scientist and engineers. 

Additional benefit

An additional benefit of a fully digitally twinned campus grid is the value-add of the corresponding data lake, an entity that will serve the establishment of new frontiers in digital R&D exchanges, governed by the appropriate digital ethics, says Dr Maritz.

He continues: “The UFS is in a unique position to compete in the Digital Futures paradigm, with emphasis on its ability to generate innovative digital backbones to serve multidisciplinary research interactions between internal research groups and industry, with unique contributions generated in the field of digital training. The UFS Grid Related Research Group has also been receiving valuable support, training, and guidance from the Emerging Scholars Accelerator Programme (ESAP), led by Dr Henriëtte Van Den Berg, including mentorship by Prof Pieter Meintjes, senior professor at the Department of Physics, UFS. 

“This symposium was part of the engagement efforts by the UFS Grid Related Research Group as the main driver of the merSETA funded UFS project for Digital and Data Engineering, which is closely affiliated with the initiative for Digital Futures.”

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept