Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 September 2021 | Story André Damons | Photo Supplied
Dr Jacques Maritz, a lecturer at the UFS Department of Engineering Sciences (EnSci), recently hosted and chaired a mini-symposium on the role of UFS Grid Related Research.

During 2020 the University of the Free State (UFS) Qwaqwa campus experienced a loss of electricity supply for 10% of the year which led to emergency generation costs reaching R1.2-million. 

This is one of the problems Dr Jacques Maritz, a lecturer at the UFS Department of Engineering Sciences (EnSci), and the UFS Grid Related Research group are looking to address with their research on green and sustainable digital transformation efforts of local campus power grids.

Dr Maritz recently hosted and chaired a mini-symposium on the role of UFS Grid Related Research during which research strategies, visions and missions were shared by different research groups. These groups included the UFS Grid Related Research Group (presented by Dr Maritz), the UFS Initiative for Digital Futures (presented by Mr Herkulaas Combrink and Prof Katinka de Wet, both interim directors) and the Block Chain Research Group (presented by Mr Riaan Bezuidenhout, a PhD student at the Department of Computer Science and Informatics).  

Dr More Manda, on behalf of merSETA strategy and research, presented its strategic priorities for the next couple of years, which included the observation to drive the development of Digital and Green Skills. Mr Nicolaas Esterhuysen, from UFS Department of University Estates, also presented a live demonstration of the current state of the UFS smart grid. Industry partners presented a synopsis of their efforts and products pertaining to the evolution of digital and green campus grids. 

The symposium highlighted the existing synergies and visions

The symposium boasted an international keynote by Dr Veselin Skendzic (locally supported by Mr Deon Joubert, SEL), a principal research engineer with Schweitzer Engineering Laboratories  Inc (SEL), on the detection of power grid faults using the phenomena of travelling waves.

“The symposium highlighted the existing synergies and visions shared between UFS research groups, our industry partners and funders. An innovative model of industry engagement via shared case studies and technical papers, with emphasis on local campus grids, was explored and discussed. 

“The UFS Initiative for Digital Futures placed emphasis on the value-add of multidisciplinary research teams when attempting to solve the most critical social problems, especially in the South African digital paradigm. One of the notable successes of this symposium was that it provided a platform for several research groups within the paradigms of science, engineering and social sciences to synchronise with industry and showcase their expertise towards the effort of creating green and sustainable campus grids,” says Dr Martiz.
Mr Nicolaas Esterhuysen, from UFS Department of University Estates, also presented a live demonstration
of the current state of the UFS smart grid. (Photo:Supplied)

According to him, the critical discussions observed during the symposium aim towards future efforts that include working more closely with industry partners and leveraging internal collaborations in order to advance the digitalisation, optimisation, reliability and research-readiness associated with campus grids. The latter is also part of the mandate of the UFS Grid Related Research Group to build local research instruments that will serve a wider community of scientist and engineers. 

Additional benefit

An additional benefit of a fully digitally twinned campus grid is the value-add of the corresponding data lake, an entity that will serve the establishment of new frontiers in digital R&D exchanges, governed by the appropriate digital ethics, says Dr Maritz.

He continues: “The UFS is in a unique position to compete in the Digital Futures paradigm, with emphasis on its ability to generate innovative digital backbones to serve multidisciplinary research interactions between internal research groups and industry, with unique contributions generated in the field of digital training. The UFS Grid Related Research Group has also been receiving valuable support, training, and guidance from the Emerging Scholars Accelerator Programme (ESAP), led by Dr Henriëtte Van Den Berg, including mentorship by Prof Pieter Meintjes, senior professor at the Department of Physics, UFS. 

“This symposium was part of the engagement efforts by the UFS Grid Related Research Group as the main driver of the merSETA funded UFS project for Digital and Data Engineering, which is closely affiliated with the initiative for Digital Futures.”

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept