Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 September 2021 | Story André Damons | Photo Supplied
Dr Jacques Maritz, a lecturer at the UFS Department of Engineering Sciences (EnSci), recently hosted and chaired a mini-symposium on the role of UFS Grid Related Research.

During 2020 the University of the Free State (UFS) Qwaqwa campus experienced a loss of electricity supply for 10% of the year which led to emergency generation costs reaching R1.2-million. 

This is one of the problems Dr Jacques Maritz, a lecturer at the UFS Department of Engineering Sciences (EnSci), and the UFS Grid Related Research group are looking to address with their research on green and sustainable digital transformation efforts of local campus power grids.

Dr Maritz recently hosted and chaired a mini-symposium on the role of UFS Grid Related Research during which research strategies, visions and missions were shared by different research groups. These groups included the UFS Grid Related Research Group (presented by Dr Maritz), the UFS Initiative for Digital Futures (presented by Mr Herkulaas Combrink and Prof Katinka de Wet, both interim directors) and the Block Chain Research Group (presented by Mr Riaan Bezuidenhout, a PhD student at the Department of Computer Science and Informatics).  

Dr More Manda, on behalf of merSETA strategy and research, presented its strategic priorities for the next couple of years, which included the observation to drive the development of Digital and Green Skills. Mr Nicolaas Esterhuysen, from UFS Department of University Estates, also presented a live demonstration of the current state of the UFS smart grid. Industry partners presented a synopsis of their efforts and products pertaining to the evolution of digital and green campus grids. 

The symposium highlighted the existing synergies and visions

The symposium boasted an international keynote by Dr Veselin Skendzic (locally supported by Mr Deon Joubert, SEL), a principal research engineer with Schweitzer Engineering Laboratories  Inc (SEL), on the detection of power grid faults using the phenomena of travelling waves.

“The symposium highlighted the existing synergies and visions shared between UFS research groups, our industry partners and funders. An innovative model of industry engagement via shared case studies and technical papers, with emphasis on local campus grids, was explored and discussed. 

“The UFS Initiative for Digital Futures placed emphasis on the value-add of multidisciplinary research teams when attempting to solve the most critical social problems, especially in the South African digital paradigm. One of the notable successes of this symposium was that it provided a platform for several research groups within the paradigms of science, engineering and social sciences to synchronise with industry and showcase their expertise towards the effort of creating green and sustainable campus grids,” says Dr Martiz.
Mr Nicolaas Esterhuysen, from UFS Department of University Estates, also presented a live demonstration
of the current state of the UFS smart grid. (Photo:Supplied)

According to him, the critical discussions observed during the symposium aim towards future efforts that include working more closely with industry partners and leveraging internal collaborations in order to advance the digitalisation, optimisation, reliability and research-readiness associated with campus grids. The latter is also part of the mandate of the UFS Grid Related Research Group to build local research instruments that will serve a wider community of scientist and engineers. 

Additional benefit

An additional benefit of a fully digitally twinned campus grid is the value-add of the corresponding data lake, an entity that will serve the establishment of new frontiers in digital R&D exchanges, governed by the appropriate digital ethics, says Dr Maritz.

He continues: “The UFS is in a unique position to compete in the Digital Futures paradigm, with emphasis on its ability to generate innovative digital backbones to serve multidisciplinary research interactions between internal research groups and industry, with unique contributions generated in the field of digital training. The UFS Grid Related Research Group has also been receiving valuable support, training, and guidance from the Emerging Scholars Accelerator Programme (ESAP), led by Dr Henriëtte Van Den Berg, including mentorship by Prof Pieter Meintjes, senior professor at the Department of Physics, UFS. 

“This symposium was part of the engagement efforts by the UFS Grid Related Research Group as the main driver of the merSETA funded UFS project for Digital and Data Engineering, which is closely affiliated with the initiative for Digital Futures.”

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept