Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 September 2021 | Story André Damons | Photo Supplied
Dr Jacques Maritz, a lecturer at the UFS Department of Engineering Sciences (EnSci), recently hosted and chaired a mini-symposium on the role of UFS Grid Related Research.

During 2020 the University of the Free State (UFS) Qwaqwa campus experienced a loss of electricity supply for 10% of the year which led to emergency generation costs reaching R1.2-million. 

This is one of the problems Dr Jacques Maritz, a lecturer at the UFS Department of Engineering Sciences (EnSci), and the UFS Grid Related Research group are looking to address with their research on green and sustainable digital transformation efforts of local campus power grids.

Dr Maritz recently hosted and chaired a mini-symposium on the role of UFS Grid Related Research during which research strategies, visions and missions were shared by different research groups. These groups included the UFS Grid Related Research Group (presented by Dr Maritz), the UFS Initiative for Digital Futures (presented by Mr Herkulaas Combrink and Prof Katinka de Wet, both interim directors) and the Block Chain Research Group (presented by Mr Riaan Bezuidenhout, a PhD student at the Department of Computer Science and Informatics).  

Dr More Manda, on behalf of merSETA strategy and research, presented its strategic priorities for the next couple of years, which included the observation to drive the development of Digital and Green Skills. Mr Nicolaas Esterhuysen, from UFS Department of University Estates, also presented a live demonstration of the current state of the UFS smart grid. Industry partners presented a synopsis of their efforts and products pertaining to the evolution of digital and green campus grids. 

The symposium highlighted the existing synergies and visions

The symposium boasted an international keynote by Dr Veselin Skendzic (locally supported by Mr Deon Joubert, SEL), a principal research engineer with Schweitzer Engineering Laboratories  Inc (SEL), on the detection of power grid faults using the phenomena of travelling waves.

“The symposium highlighted the existing synergies and visions shared between UFS research groups, our industry partners and funders. An innovative model of industry engagement via shared case studies and technical papers, with emphasis on local campus grids, was explored and discussed. 

“The UFS Initiative for Digital Futures placed emphasis on the value-add of multidisciplinary research teams when attempting to solve the most critical social problems, especially in the South African digital paradigm. One of the notable successes of this symposium was that it provided a platform for several research groups within the paradigms of science, engineering and social sciences to synchronise with industry and showcase their expertise towards the effort of creating green and sustainable campus grids,” says Dr Martiz.
Mr Nicolaas Esterhuysen, from UFS Department of University Estates, also presented a live demonstration
of the current state of the UFS smart grid. (Photo:Supplied)

According to him, the critical discussions observed during the symposium aim towards future efforts that include working more closely with industry partners and leveraging internal collaborations in order to advance the digitalisation, optimisation, reliability and research-readiness associated with campus grids. The latter is also part of the mandate of the UFS Grid Related Research Group to build local research instruments that will serve a wider community of scientist and engineers. 

Additional benefit

An additional benefit of a fully digitally twinned campus grid is the value-add of the corresponding data lake, an entity that will serve the establishment of new frontiers in digital R&D exchanges, governed by the appropriate digital ethics, says Dr Maritz.

He continues: “The UFS is in a unique position to compete in the Digital Futures paradigm, with emphasis on its ability to generate innovative digital backbones to serve multidisciplinary research interactions between internal research groups and industry, with unique contributions generated in the field of digital training. The UFS Grid Related Research Group has also been receiving valuable support, training, and guidance from the Emerging Scholars Accelerator Programme (ESAP), led by Dr Henriëtte Van Den Berg, including mentorship by Prof Pieter Meintjes, senior professor at the Department of Physics, UFS. 

“This symposium was part of the engagement efforts by the UFS Grid Related Research Group as the main driver of the merSETA funded UFS project for Digital and Data Engineering, which is closely affiliated with the initiative for Digital Futures.”

News Archive

Consumer Science at the UFS awards three PhDs
2015-07-08

Dr Gloria Seiphetlheng, Dr Natasha Cronje, Dr Ismari van der Merwe and Prof Hester Steyn.
Photo: Leonie Bolleurs

For the first time in its history, the Department of Consumer Science in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) earned three doctorates at one graduation ceremony this year. This week three PhDs were awarded to Ismari van der Merwe, Natasha Cronje, and Gloria Seiphetlheng at the Winter Graduation that took place on the Bloemfontein Campus.

Electrochemically-activated water is widely used in the food and other industries, due to its excellent environment-friendly properties. However, it is not used in the textile industry yet, because too little research has been done to determine the possible positive and negative impact it may have on textiles.

With the thesis, The evaluation of catholyte treatment on the colour and tensile properties of dyed cotton, polyester and polyamide 6,6 fabrics,  Dr Cronje, a lecturer in the UFS’s Department of Consumer Science, and Dr Seiphetlheng from the Serowe College of Education in Botswana,  provided major new information with the thesis, Anolyte as an alternative bleach for cotton fabrics. This information is essential when considering the application of catholytes and anolytes in the textile industry.

Electrochemically-activated water divides water in catholytes and anolytes. The anolyte part is used as a disinfectant and bleach. It is not really suitable for domestic use, as it can cause colour loss in coloured textile products. However, it can be used in the hospitality industry where white sheets, towels, etc., are used and washed on a regular basis.

The catholyte part of the water has properties similar to washing powder. It can also be used in the textile industry as washing liquid.

According to Prof Hester Steyn, Head of the Department of Consumer Science and supervisor of all three PhD candidates, this electrochemically-activated water is also very eco-friendly. “It has a short shelf life. If the electrochemically-activated water isn’t utilised, it returns to normal water that wouldn’t harm the environment. No water is therefore lost, and no waste products are released that would contaminate the environment,” she says.

Dr Van der Merwe’s research focused on Degumming Gonometa postica cocoons using environmentally conscious methods. A lecturer in the Department of Consumer Science, she demonstrated that simple and environmentally-friendly methods can be used with great success to procure wild silk from the cocoons of the Gonometa postica worms living in the camel thorn trees found in the Northern Cape and Namibia.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept