Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 September 2021 | Story Lacea Loader | Photo Supplied
Mr David Noko, newly appointed Chairperson of the UFS Council.

During its third scheduled meeting for the year that took place virtually on 17 September 2021, the Council of the University of the Free State (UFS) appointed Mr David Noko as Chairperson for a term of four years, as from 1 October 2021.

Mr Noko, who was Deputy Chairperson of the Council, will take over the Chairpersonship from Dr Willem Louw, whose term will come to an end on 30 September 2021.
 
“On behalf of the Council, I congratulate Mr Noko and wish him all the best during his term of leading the Council of the UFS. With the skills and competence available in the Council, complemented by Prof Francis Petersen, Rector and Vice-Chancellor, and his team, he has access to a formidable group of individuals to support him in the execution of this very important role,” said Dr Louw during the meeting. 
 
“I am humbled and honoured for the opportunity and thank the Council for their confidence and trust in me. Since serving on the Council, I have become an ambassador of the University of the Free State, talking to many stakeholders about the institution and how much it should be supported. I am here to serve and look forward to doing so in a professional and dignified manner, together with everyone on the Council and with the leadership of the university,” said Mr Noko.
 
Mr Noko is well-known and respected internationally as a business leader. He has a National Higher Diploma in Mechanical Engineering from the Technikon Witwatersrand (now the University of Johannesburg), a Management Development Programme (MDP) Certificate from the University of the Witwatersrand, and a Postgraduate Diploma in Company Directorships from the Graduate Institute of Management and Technology. He also completed a master’s degree in Business Administration at the Heriot-Watt University and a Senior Executive Programme at the London Business School.
 
Before retiring from the corporate world in 2019, Mr Noko was the Executive Vice-President of AngloGold Ashanti, where he was responsible for the company’s global Sustainable Development and Government Relations portfolios. His career began at the General Electric Company (GEC) before moving to South African Breweries in 1987, and then to Pepsi-Cola International in 1994, where he gained extensive international exposure and global experience.
 
In 1999, Mr Noko was appointed as Chief Executive Officer (CEO) of Air Chefs (Pty) Ltd in South Africa, before joining De Beers in 2002. In 2006, he was appointed Managing Director and CEO of De Beers Consolidated Mines Limited (DBCM), and in 2010 he founded his own company, CelaCorp (Pty) Ltd. He also founded ESG Advisory (Pty) Ltd, a company providing advisory services to corporates relating to environment, social and governance matters, mostly focusing on mining companies.
 
He is a member of the Institute of Directors SA and served on the boards of Royal Bafokeng Platinum Limited, Harmony Gold (Deputy Chairman), AstraPak Ltd, and PlatiStone Holdings (Chairman). He is currently a board director of African Rainbow Minerals Ltd, Tongaat Hulett Ltd, and Aveng Moolmans (Pty) Ltd.

The Council also thanked Dr Louw for his service and for the impeccable leadership he displayed during the time he served.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept