Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 September 2021 | Story Lacea Loader | Photo Supplied
Mr David Noko, newly appointed Chairperson of the UFS Council.

During its third scheduled meeting for the year that took place virtually on 17 September 2021, the Council of the University of the Free State (UFS) appointed Mr David Noko as Chairperson for a term of four years, as from 1 October 2021.

Mr Noko, who was Deputy Chairperson of the Council, will take over the Chairpersonship from Dr Willem Louw, whose term will come to an end on 30 September 2021.
 
“On behalf of the Council, I congratulate Mr Noko and wish him all the best during his term of leading the Council of the UFS. With the skills and competence available in the Council, complemented by Prof Francis Petersen, Rector and Vice-Chancellor, and his team, he has access to a formidable group of individuals to support him in the execution of this very important role,” said Dr Louw during the meeting. 
 
“I am humbled and honoured for the opportunity and thank the Council for their confidence and trust in me. Since serving on the Council, I have become an ambassador of the University of the Free State, talking to many stakeholders about the institution and how much it should be supported. I am here to serve and look forward to doing so in a professional and dignified manner, together with everyone on the Council and with the leadership of the university,” said Mr Noko.
 
Mr Noko is well-known and respected internationally as a business leader. He has a National Higher Diploma in Mechanical Engineering from the Technikon Witwatersrand (now the University of Johannesburg), a Management Development Programme (MDP) Certificate from the University of the Witwatersrand, and a Postgraduate Diploma in Company Directorships from the Graduate Institute of Management and Technology. He also completed a master’s degree in Business Administration at the Heriot-Watt University and a Senior Executive Programme at the London Business School.
 
Before retiring from the corporate world in 2019, Mr Noko was the Executive Vice-President of AngloGold Ashanti, where he was responsible for the company’s global Sustainable Development and Government Relations portfolios. His career began at the General Electric Company (GEC) before moving to South African Breweries in 1987, and then to Pepsi-Cola International in 1994, where he gained extensive international exposure and global experience.
 
In 1999, Mr Noko was appointed as Chief Executive Officer (CEO) of Air Chefs (Pty) Ltd in South Africa, before joining De Beers in 2002. In 2006, he was appointed Managing Director and CEO of De Beers Consolidated Mines Limited (DBCM), and in 2010 he founded his own company, CelaCorp (Pty) Ltd. He also founded ESG Advisory (Pty) Ltd, a company providing advisory services to corporates relating to environment, social and governance matters, mostly focusing on mining companies.
 
He is a member of the Institute of Directors SA and served on the boards of Royal Bafokeng Platinum Limited, Harmony Gold (Deputy Chairman), AstraPak Ltd, and PlatiStone Holdings (Chairman). He is currently a board director of African Rainbow Minerals Ltd, Tongaat Hulett Ltd, and Aveng Moolmans (Pty) Ltd.

The Council also thanked Dr Louw for his service and for the impeccable leadership he displayed during the time he served.

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept