Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 September 2021 | Story Lacea Loader | Photo Supplied
Mr David Noko, newly appointed Chairperson of the UFS Council.

During its third scheduled meeting for the year that took place virtually on 17 September 2021, the Council of the University of the Free State (UFS) appointed Mr David Noko as Chairperson for a term of four years, as from 1 October 2021.

Mr Noko, who was Deputy Chairperson of the Council, will take over the Chairpersonship from Dr Willem Louw, whose term will come to an end on 30 September 2021.
 
“On behalf of the Council, I congratulate Mr Noko and wish him all the best during his term of leading the Council of the UFS. With the skills and competence available in the Council, complemented by Prof Francis Petersen, Rector and Vice-Chancellor, and his team, he has access to a formidable group of individuals to support him in the execution of this very important role,” said Dr Louw during the meeting. 
 
“I am humbled and honoured for the opportunity and thank the Council for their confidence and trust in me. Since serving on the Council, I have become an ambassador of the University of the Free State, talking to many stakeholders about the institution and how much it should be supported. I am here to serve and look forward to doing so in a professional and dignified manner, together with everyone on the Council and with the leadership of the university,” said Mr Noko.
 
Mr Noko is well-known and respected internationally as a business leader. He has a National Higher Diploma in Mechanical Engineering from the Technikon Witwatersrand (now the University of Johannesburg), a Management Development Programme (MDP) Certificate from the University of the Witwatersrand, and a Postgraduate Diploma in Company Directorships from the Graduate Institute of Management and Technology. He also completed a master’s degree in Business Administration at the Heriot-Watt University and a Senior Executive Programme at the London Business School.
 
Before retiring from the corporate world in 2019, Mr Noko was the Executive Vice-President of AngloGold Ashanti, where he was responsible for the company’s global Sustainable Development and Government Relations portfolios. His career began at the General Electric Company (GEC) before moving to South African Breweries in 1987, and then to Pepsi-Cola International in 1994, where he gained extensive international exposure and global experience.
 
In 1999, Mr Noko was appointed as Chief Executive Officer (CEO) of Air Chefs (Pty) Ltd in South Africa, before joining De Beers in 2002. In 2006, he was appointed Managing Director and CEO of De Beers Consolidated Mines Limited (DBCM), and in 2010 he founded his own company, CelaCorp (Pty) Ltd. He also founded ESG Advisory (Pty) Ltd, a company providing advisory services to corporates relating to environment, social and governance matters, mostly focusing on mining companies.
 
He is a member of the Institute of Directors SA and served on the boards of Royal Bafokeng Platinum Limited, Harmony Gold (Deputy Chairman), AstraPak Ltd, and PlatiStone Holdings (Chairman). He is currently a board director of African Rainbow Minerals Ltd, Tongaat Hulett Ltd, and Aveng Moolmans (Pty) Ltd.

The Council also thanked Dr Louw for his service and for the impeccable leadership he displayed during the time he served.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept